Fractional Model of Brinkman-Type Nanofluid Flow with Fractional Order Fourier's and Fick's Laws

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-10-20 DOI:10.1142/s0218348x23401990
Saqib Murtaza, Poom Kumam, Zubair Ahmad, Kanokwan Sitthithakerngkiet, Thana Sutthibutpong
{"title":"Fractional Model of Brinkman-Type Nanofluid Flow with Fractional Order Fourier's and Fick's Laws","authors":"Saqib Murtaza, Poom Kumam, Zubair Ahmad, Kanokwan Sitthithakerngkiet, Thana Sutthibutpong","doi":"10.1142/s0218348x23401990","DOIUrl":null,"url":null,"abstract":"Nanofluids are used to achieve maximum thermal performance with the smallest concentration of nanoparticles and stable suspension in conventional fluids. The effectiveness of nanofluids in convection processes is significantly influenced by their increased thermophysical characteristics. Based on the characteristics of nanofluids, this study examines generalized Brinkman-type nanofluid flow in a vertical channel. Three different types of ultrafine solid nanoparticles such as GO, [Formula: see text], and [Formula: see text] are dispersed uniformly in regular water to form nanofluid. Partial differential equations (PDEs) are used to model the phenomena. Fick’s and Fourier’s laws of fractional order were then used to formulate the generalized mathematical model. The exact solution of the generalized mathematical model has been obtained by the joint use of Fourier sine and the Laplace transform (LT) techniques. The obtained solution is represented in Mittag-Leffler function. To analyze the behavior of fluid flow, heat and mass distribution in fluid, the obtained solution was computed numerically and then plotted in response to different physical parameters. It is worth noting from the analysis that the heat transfer efficiency of regular water has been improved by 25% by using GO nanoparticles, 23.98% by using [Formula: see text], and 20.88% by using [Formula: see text].","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23401990","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofluids are used to achieve maximum thermal performance with the smallest concentration of nanoparticles and stable suspension in conventional fluids. The effectiveness of nanofluids in convection processes is significantly influenced by their increased thermophysical characteristics. Based on the characteristics of nanofluids, this study examines generalized Brinkman-type nanofluid flow in a vertical channel. Three different types of ultrafine solid nanoparticles such as GO, [Formula: see text], and [Formula: see text] are dispersed uniformly in regular water to form nanofluid. Partial differential equations (PDEs) are used to model the phenomena. Fick’s and Fourier’s laws of fractional order were then used to formulate the generalized mathematical model. The exact solution of the generalized mathematical model has been obtained by the joint use of Fourier sine and the Laplace transform (LT) techniques. The obtained solution is represented in Mittag-Leffler function. To analyze the behavior of fluid flow, heat and mass distribution in fluid, the obtained solution was computed numerically and then plotted in response to different physical parameters. It is worth noting from the analysis that the heat transfer efficiency of regular water has been improved by 25% by using GO nanoparticles, 23.98% by using [Formula: see text], and 20.88% by using [Formula: see text].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分数阶傅里叶定律和菲克定律的brinkman型纳米流体流动分数阶模型
纳米流体用于在常规流体中以最小的纳米颗粒浓度和稳定的悬浮液获得最大的热性能。纳米流体在对流过程中的有效性受到其增加的热物理特性的显著影响。基于纳米流体的特性,研究了垂直通道中广义brinkman型纳米流体的流动。将氧化石墨烯、[公式:见文]、[公式:见文]等三种不同类型的超细固体纳米颗粒均匀分散在规则水中,形成纳米流体。用偏微分方程(PDEs)来模拟这种现象。然后使用分数阶菲克定律和傅立叶定律来制定广义数学模型。利用傅里叶正弦和拉普拉斯变换技术,得到了广义数学模型的精确解。得到的解用Mittag-Leffler函数表示。为了分析流体的流动行为、热量和质量分布,对得到的解进行了数值计算,并对不同物理参数下的解进行了绘图。从分析中值得注意的是,使用氧化石墨烯纳米颗粒可将普通水的换热效率提高25%,使用[公式:见文]可将换热效率提高23.98%,使用[公式:见文]可将换热效率提高20.88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1