Fuel recovery from plastic and organic wastes with the help of mineralogical catalysts

IF 1.4 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Archives of Environmental Protection Pub Date : 2023-10-20 DOI:10.24425/aep.2023.147325
{"title":"Fuel recovery from plastic and organic wastes with the help of mineralogical catalysts","authors":"","doi":"10.24425/aep.2023.147325","DOIUrl":null,"url":null,"abstract":": Plastics are one of the most widely used materials, and, in most cases, they are designed to have long life spans. Since plastic and packaging waste pollute the environment for many years, their disposal is of great importance for the environment and human health. In this paper, a system was developed to store liquid fuel from plastic and organic waste mixes without solidification, which then can be used as fuel in motor vehicles and construction machinery. For this purpose, polyethylene terephthalate (PET), polyvinyl chloride (PVC), and organic wastes and clay, zeolite, and MCS23-code materials (50% magnetite-%25 calcium oxide-%25 sodium chloride) were heated in a closed medium at temperatures ranging from 300 to 400°C and subsequently re-condensed. The study conducted twenty tests, involving various types and rates of plastic and organic materials, as well as different rates","PeriodicalId":48950,"journal":{"name":"Archives of Environmental Protection","volume":"77 4","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/aep.2023.147325","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

: Plastics are one of the most widely used materials, and, in most cases, they are designed to have long life spans. Since plastic and packaging waste pollute the environment for many years, their disposal is of great importance for the environment and human health. In this paper, a system was developed to store liquid fuel from plastic and organic waste mixes without solidification, which then can be used as fuel in motor vehicles and construction machinery. For this purpose, polyethylene terephthalate (PET), polyvinyl chloride (PVC), and organic wastes and clay, zeolite, and MCS23-code materials (50% magnetite-%25 calcium oxide-%25 sodium chloride) were heated in a closed medium at temperatures ranging from 300 to 400°C and subsequently re-condensed. The study conducted twenty tests, involving various types and rates of plastic and organic materials, as well as different rates
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在矿物催化剂的帮助下从塑料和有机废物中回收燃料
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Environmental Protection
Archives of Environmental Protection ENVIRONMENTAL SCIENCES-
CiteScore
2.70
自引率
26.70%
发文量
0
期刊介绍: Archives of Environmental Protection is the oldest Polish scientific journal of international scope that publishes articles on engineering and environmental protection. The quarterly has been published by the Institute of Environmental Engineering, Polish Academy of Sciences since 1975. The journal has served as a forum for the exchange of views and ideas among scientists. It has become part of scientific life in Poland and abroad. The quarterly publishes the results of research and scientific inquiries by best specialists hereby becoming an important pillar of science. The journal facilitates better understanding of environmental risks to humans and ecosystems and it also shows the methods for their analysis as well as trends in the search of effective solutions to minimize these risks.
期刊最新文献
Dye removal using keggin polyoxometalates assisted ultrafi ltration: characterization and UV visible study Chemical stability and sanitary properties of pelletized organo-mineral waste-derived fertilizer. Chemical stability and sanitary properties of pelletized organo-mineral waste-derived fertilizer Production of second generation bioethanolfrom straw during simultaneous microbial saccharification and fermentation Assessment of microbial contamination of atmospheric air in a selected wastewater treatment plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1