Formation of N–O–H bearing species in HNO3 and H2O icy samples by heavy-ion irradiation: an infrared spectroscopic study

Ana Lucia Ferreira Barros, A. Bergantini, E. F. da Silveira, S.D. Tozetti, Hermann Rothard, P. Boduch, A. Domaracka
{"title":"Formation of N–O–H bearing species in HNO<sub>3</sub> and H<sub>2</sub>O icy samples by heavy-ion irradiation: an infrared spectroscopic study","authors":"Ana Lucia Ferreira Barros, A. Bergantini, E. F. da Silveira, S.D. Tozetti, Hermann Rothard, P. Boduch, A. Domaracka","doi":"10.1088/1361-6455/ad0204","DOIUrl":null,"url":null,"abstract":"Abstract This article investigates the radiolysis of a mixture of nitric acid with water (HNO 3 :H 2 O) at 16 K in high-vacuum (residual pressure < 10 −6 mbar). A nitric acid-water ice film was exposed to 40 MeV 58 Ni 11+ ion beam in a heavy ion accelerator facility in France. For this astrochemically- and atmospherically-relevant ice mixture of nitric acid and water, we analyze the possible formation and destruction processes of N–O bearing species, thus providing spectroscopic data in the infrared (IR) region for theoretical, laboratory and observational future studies. The irradiation synthetized 18 species which were posteriorly examined by infrared spectroscopy: N 2 O, NH 3 , NO, NO 2 and H x N y O z molecules, such as hidroxylamine (NH 2 OH), nitrous acid (HONO) as well as other species with bonding N–O, N–H and H–O–N converting surface-adsorbed nitrogen oxides into astrochemically active NO x . The interaction of HNO 3 and H 2 O originates H–N–O molecular complexes, which were investigated as particular cases of the hydrogen-bonded species formed by a more electronegative atom (N or O) interacts intra or intermolecularly with a donor atom (N or O) and observed in the interstellar medium with higher quantities or great abundances. The HNO 3 and H 2 O destruction cross sections have been determined to be 8.5 × 10 −13 and 1.2 × 10 −13 cm 2 , respectively, for the mentioned experimental conditions.","PeriodicalId":16799,"journal":{"name":"Journal of Physics B","volume":"14 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad0204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This article investigates the radiolysis of a mixture of nitric acid with water (HNO 3 :H 2 O) at 16 K in high-vacuum (residual pressure < 10 −6 mbar). A nitric acid-water ice film was exposed to 40 MeV 58 Ni 11+ ion beam in a heavy ion accelerator facility in France. For this astrochemically- and atmospherically-relevant ice mixture of nitric acid and water, we analyze the possible formation and destruction processes of N–O bearing species, thus providing spectroscopic data in the infrared (IR) region for theoretical, laboratory and observational future studies. The irradiation synthetized 18 species which were posteriorly examined by infrared spectroscopy: N 2 O, NH 3 , NO, NO 2 and H x N y O z molecules, such as hidroxylamine (NH 2 OH), nitrous acid (HONO) as well as other species with bonding N–O, N–H and H–O–N converting surface-adsorbed nitrogen oxides into astrochemically active NO x . The interaction of HNO 3 and H 2 O originates H–N–O molecular complexes, which were investigated as particular cases of the hydrogen-bonded species formed by a more electronegative atom (N or O) interacts intra or intermolecularly with a donor atom (N or O) and observed in the interstellar medium with higher quantities or great abundances. The HNO 3 and H 2 O destruction cross sections have been determined to be 8.5 × 10 −13 and 1.2 × 10 −13 cm 2 , respectively, for the mentioned experimental conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重离子辐照在HNO3和H2O冰样中形成含N-O-H物质的红外光谱研究
摘要:本文研究了高真空(残余压力<10−6mbar)。在法国重离子加速器装置中,将一种硝酸-水冰膜暴露在40 MeV的58 Ni 11+离子束下。对于这种与天体化学和大气相关的硝酸和水的冰混合物,我们分析了含氮物种可能的形成和破坏过程,从而为理论、实验室和观测未来的研究提供了红外(IR)区域的光谱数据。辐照合成了18种n2o、nh3、NO、no2和hxnyoz分子,如氢氧胺(nh2oh)、亚硝酸(HONO),以及其他与N - O、N - H和H - O - N键合的物质,将表面吸附的氮氧化物转化为具有天体化学活性的nox。hno3和h2o的相互作用产生了H - N - O分子络合物,这是由电负性更强的原子(N或O)与供体原子(N或O)在分子内或分子间相互作用形成的氢键物质的特殊情况,在星际介质中观察到的数量或丰度更高。在上述实验条件下,hno3和h2o的破坏截面分别为8.5 × 10−13和1.2 × 10−13 cm 2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical dipole micro-trap for atoms based on crossed planar photonic waveguides Evolution of the Resonances of Small Water Cluster Anions (H2O)n≤19– in He Droplets upon Attachment of Electrons Supersensitive phase estimation for hybrid interferometer using balanced homodyne detection Significant non-adiabatic effect of the K(4s2S) + H2 reaction Asymmetric solitons induced by transition and beating effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1