To Copy, or not to Copy; That is a Critical Issue of the Output Softmax Layer in Neural Sequential Recommenders

Chang, Haw-Shiuan, Agarwal, Nikhil, McCallum, Andrew
{"title":"To Copy, or not to Copy; That is a Critical Issue of the Output Softmax\n Layer in Neural Sequential Recommenders","authors":"Chang, Haw-Shiuan, Agarwal, Nikhil, McCallum, Andrew","doi":"10.48550/arxiv.2310.14079","DOIUrl":null,"url":null,"abstract":"Recent studies suggest that the existing neural models have difficulty handling repeated items in sequential recommendation tasks. However, our understanding of this difficulty is still limited. In this study, we substantially advance this field by identifying a major source of the problem: the single hidden state embedding and static item embeddings in the output softmax layer. Specifically, the similarity structure of the global item embeddings in the softmax layer sometimes forces the single hidden state embedding to be close to new items when copying is a better choice, while sometimes forcing the hidden state to be close to the items from the input inappropriately. To alleviate the problem, we adapt the recently-proposed softmax alternatives such as softmax-CPR to sequential recommendation tasks and demonstrate that the new softmax architectures unleash the capability of the neural encoder on learning when to copy and when to exclude the items from the input sequence. By only making some simple modifications on the output softmax layer for SASRec and GRU4Rec, softmax-CPR achieves consistent improvement in 12 datasets. With almost the same model size, our best method not only improves the average NDCG@10 of GRU4Rec in 5 datasets with duplicated items by 10% (4%-17% individually) but also improves 7 datasets without duplicated items by 24% (8%-39%)!","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":"32 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2310.14079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies suggest that the existing neural models have difficulty handling repeated items in sequential recommendation tasks. However, our understanding of this difficulty is still limited. In this study, we substantially advance this field by identifying a major source of the problem: the single hidden state embedding and static item embeddings in the output softmax layer. Specifically, the similarity structure of the global item embeddings in the softmax layer sometimes forces the single hidden state embedding to be close to new items when copying is a better choice, while sometimes forcing the hidden state to be close to the items from the input inappropriately. To alleviate the problem, we adapt the recently-proposed softmax alternatives such as softmax-CPR to sequential recommendation tasks and demonstrate that the new softmax architectures unleash the capability of the neural encoder on learning when to copy and when to exclude the items from the input sequence. By only making some simple modifications on the output softmax layer for SASRec and GRU4Rec, softmax-CPR achieves consistent improvement in 12 datasets. With almost the same model size, our best method not only improves the average NDCG@10 of GRU4Rec in 5 datasets with duplicated items by 10% (4%-17% individually) but also improves 7 datasets without duplicated items by 24% (8%-39%)!
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复制,还是不复制;这是神经序列推荐中输出Softmax层的一个关键问题
最近的研究表明,现有的神经模型在处理顺序推荐任务中的重复项目方面存在困难。然而,我们对这一困难的认识仍然有限。在这项研究中,我们通过确定问题的主要来源:输出softmax层中的单个隐藏状态嵌入和静态项嵌入,实质性地推进了这一领域。具体来说,softmax层中全局项目嵌入的相似结构有时会迫使单个隐藏状态嵌入在复制是更好选择的情况下接近新项目,而有时会迫使隐藏状态不适当地接近输入的项目。为了缓解这个问题,我们将最近提出的softmax替代方案(如softmax- cpr)应用于顺序推荐任务,并证明了新的softmax架构释放了神经编码器学习何时复制和何时从输入序列中排除项目的能力。通过对SASRec和GRU4Rec的输出softmax层进行一些简单的修改,softmax- cpr在12个数据集上实现了一致的改进。在几乎相同的模型大小下,我们的最佳方法不仅将5个具有重复项的数据集的GRU4Rec平均NDCG@10提高了10%(分别为4%-17%),而且将7个没有重复项的数据集的GRU4Rec平均NDCG@10提高了24% (8%-39%)!
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CCD Photometry of the Globular Cluster NGC 5897 The Distribution of Sandpile Groups of Random Graphs with their Pairings CLiF-VQA: Enhancing Video Quality Assessment by Incorporating High-Level Semantic Information related to Human Feelings Full-dry Flipping Transfer Method for van der Waals Heterostructure Code-Aided Channel Estimation in LDPC-Coded MIMO Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1