Rafael Couto da Silva, Gabriela Wessling Oening Dicati, José Eduardo Gubaua, Eduardo Radovanovic, Sílvia Luciana Favaro
{"title":"Evaluation of the mechanical properties of polyamide 12 regarding different percentages of reused material in the selective laser sintering process","authors":"Rafael Couto da Silva, Gabriela Wessling Oening Dicati, José Eduardo Gubaua, Eduardo Radovanovic, Sílvia Luciana Favaro","doi":"10.1108/rpj-03-2023-0091","DOIUrl":null,"url":null,"abstract":"Purpose Additive manufacturing (AM) has been one of the most highlighted processes of the last few years. AM prints complex parts and items from 3D files regarding different materials, such as polymers. Moreover, there are different AM techniques available for polymers, such as selective laser sintering. In the SLS technology, polyamides 11 and 12 lead 88% of the market. These materials are high-cost and use an average of 50% of virgin material at each printing. It is possible to use lower rates of virgin material, but at least 30% is recommended. Low rates of virgin material decrease mechanical properties. Design/methodology/approach This study aims to evaluate the influence on the mechanical properties of the percentage of reused PA12 in parts manufactured by the SLS process. The specimens of PA12 were manufactured with a percentage of virgin/reused polymer of 50/50, 40/60, 30/70, 20/80 and 10/90. We considered three distinct printing directions to compare the mechanical properties of the specimens: horizontal, perpendicular and vertical. Findings The results showed that when the percentage of reused material increases, the tensile strength limit (TSL), flexural strength limit and Shore D hardness decrease. Another aspect visualized was the fragile behavior presented in the vertical specimens. In addition, DSC analysis indicated a 2% reduction of crystallinity. Scanning electron microscopy images revealed spherical voids and unfused particles of PA12 at the fracture of tensile test specimens. The material thermal history and unfused particles could decrease the material properties. Originality/value We observed that the mechanical properties, such as the TSL, flexural strength limit and hardness, decrease as the percentage of reused material increases. In addition, the process presented a printing-direction dependence, where the vertical direction presented as the more brittle between the ones used.","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/rpj-03-2023-0091","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose Additive manufacturing (AM) has been one of the most highlighted processes of the last few years. AM prints complex parts and items from 3D files regarding different materials, such as polymers. Moreover, there are different AM techniques available for polymers, such as selective laser sintering. In the SLS technology, polyamides 11 and 12 lead 88% of the market. These materials are high-cost and use an average of 50% of virgin material at each printing. It is possible to use lower rates of virgin material, but at least 30% is recommended. Low rates of virgin material decrease mechanical properties. Design/methodology/approach This study aims to evaluate the influence on the mechanical properties of the percentage of reused PA12 in parts manufactured by the SLS process. The specimens of PA12 were manufactured with a percentage of virgin/reused polymer of 50/50, 40/60, 30/70, 20/80 and 10/90. We considered three distinct printing directions to compare the mechanical properties of the specimens: horizontal, perpendicular and vertical. Findings The results showed that when the percentage of reused material increases, the tensile strength limit (TSL), flexural strength limit and Shore D hardness decrease. Another aspect visualized was the fragile behavior presented in the vertical specimens. In addition, DSC analysis indicated a 2% reduction of crystallinity. Scanning electron microscopy images revealed spherical voids and unfused particles of PA12 at the fracture of tensile test specimens. The material thermal history and unfused particles could decrease the material properties. Originality/value We observed that the mechanical properties, such as the TSL, flexural strength limit and hardness, decrease as the percentage of reused material increases. In addition, the process presented a printing-direction dependence, where the vertical direction presented as the more brittle between the ones used.
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation