An Entropy Optimizing RAS-Equivalent Algorithm for Iterative Matrix Balancing

IF 0.8 4区 数学 Q2 MATHEMATICS Comptes Rendus Mathematique Pub Date : 2023-05-11 DOI:10.5802/crmath.398
Edward Chlebus, Viswatej Kasapu
{"title":"An Entropy Optimizing RAS-Equivalent Algorithm for Iterative Matrix Balancing","authors":"Edward Chlebus, Viswatej Kasapu","doi":"10.5802/crmath.398","DOIUrl":null,"url":null,"abstract":"We have developed a new simple iterative algorithm to determine entries of a normalized matrix given its marginal probabilities. Our method has been successfully used to obtain two different solutions by maximizing the entropy of a desired matrix and by minimizing its Kullback–Leibler divergence from the initial probability distribution. The latter is fully equivalent to the well-known RAS balancing algorithm. The presented method has been evaluated using a traffic matrix of the GÉANT pan-European network and randomly generated matrices of various sparsities. It turns out to be computationally faster than RAS. We have shown that our approach is suitable for efficient balancing both dense and sparse matrices.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"38 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.398","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed a new simple iterative algorithm to determine entries of a normalized matrix given its marginal probabilities. Our method has been successfully used to obtain two different solutions by maximizing the entropy of a desired matrix and by minimizing its Kullback–Leibler divergence from the initial probability distribution. The latter is fully equivalent to the well-known RAS balancing algorithm. The presented method has been evaluated using a traffic matrix of the GÉANT pan-European network and randomly generated matrices of various sparsities. It turns out to be computationally faster than RAS. We have shown that our approach is suitable for efficient balancing both dense and sparse matrices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迭代矩阵平衡的熵优化ras -等效算法
我们开发了一种新的简单迭代算法来确定给定其边际概率的归一化矩阵的条目。我们的方法已经成功地用于通过最大化期望矩阵的熵和最小化其初始概率分布的Kullback-Leibler散度来获得两种不同的解。后者完全等同于众所周知的RAS平衡算法。使用GÉANT泛欧洲网络的流量矩阵和随机生成的各种稀疏矩阵对所提出的方法进行了评估。它的计算速度比RAS快。我们已经证明,我们的方法适合于有效地平衡密集矩阵和稀疏矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
期刊最新文献
A stability estimate for data assimilation subject to the heat equation with initial datum Controllability of a fluid-structure interaction system coupling the Navier–Stokes system and a damped beam equation Some remarks on the ergodic theorem for U-statistics An entropic generalization of Caffarelli’s contraction theorem via covariance inequalities On the symmetry of the finitistic dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1