Sensor cloud virtualisation systems for improving performance of IoT-based WSN

S. Senthil Kumaran, S.P. Balakannan
{"title":"Sensor cloud virtualisation systems for improving performance of IoT-based WSN","authors":"S. Senthil Kumaran, S.P. Balakannan","doi":"10.1504/ijwmc.2023.129085","DOIUrl":null,"url":null,"abstract":"A cloud is a new paradigm for IoT-based WSN that overcomes several limitations of traditional WSN and decouples the owners of the physical sensors from the network users. This paper proposes a cloud-based Internet of Medical Devices (IoMD), a novel architecture for the healthcare system to validate the efficiency of sensor-cloud virtualisation technique. IoT, cloud computing and fog are the three key technologies that make up the framework outlined in this paper. IoT and medical devices are integrated into our cloud-based architecture, and deep learning algorithms are used to process the collected data. A deep learning neural network method called Generative Adversarial Network (GAN) model that runs in both fog and cloud platforms and is capable of processing massive data in a fast and efficient manner. The suggested GAN is trained on a real-data set from the UCI Machine Learning Repository. Even yet, the results show that the GAN classifier can correctly categorise the medical data activities with a 99.16% accuracy rate. The proposed architecture for validation case study will ensure to benefit the sensor-cloud virtualisation paradigm for developing innovative applications in different sectors of the IoT system.","PeriodicalId":53709,"journal":{"name":"International Journal of Wireless and Mobile Computing","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Wireless and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijwmc.2023.129085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

A cloud is a new paradigm for IoT-based WSN that overcomes several limitations of traditional WSN and decouples the owners of the physical sensors from the network users. This paper proposes a cloud-based Internet of Medical Devices (IoMD), a novel architecture for the healthcare system to validate the efficiency of sensor-cloud virtualisation technique. IoT, cloud computing and fog are the three key technologies that make up the framework outlined in this paper. IoT and medical devices are integrated into our cloud-based architecture, and deep learning algorithms are used to process the collected data. A deep learning neural network method called Generative Adversarial Network (GAN) model that runs in both fog and cloud platforms and is capable of processing massive data in a fast and efficient manner. The suggested GAN is trained on a real-data set from the UCI Machine Learning Repository. Even yet, the results show that the GAN classifier can correctly categorise the medical data activities with a 99.16% accuracy rate. The proposed architecture for validation case study will ensure to benefit the sensor-cloud virtualisation paradigm for developing innovative applications in different sectors of the IoT system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于提高基于物联网的WSN性能的传感器云虚拟化系统
云是基于物联网的无线传感器网络的一种新模式,它克服了传统无线传感器网络的一些限制,并将物理传感器的所有者与网络用户解耦。本文提出了一种基于云的医疗设备互联网(IoMD),一种用于医疗系统的新架构,以验证传感器云虚拟化技术的效率。物联网、云计算和雾是构成本文概述的框架的三个关键技术。物联网和医疗设备集成到我们基于云的架构中,并使用深度学习算法处理收集的数据。一种被称为生成对抗网络(GAN)模型的深度学习神经网络方法,可以在雾和云平台上运行,能够快速有效地处理大量数据。建议的GAN在UCI机器学习存储库的真实数据集上进行训练。尽管如此,结果表明,GAN分类器可以正确地对医疗数据活动进行分类,准确率达到99.16%。验证案例研究的拟议架构将确保有利于传感器云虚拟化范例,用于在物联网系统的不同部门开发创新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Wireless and Mobile Computing
International Journal of Wireless and Mobile Computing Computer Science-Computer Science (all)
CiteScore
0.80
自引率
0.00%
发文量
76
期刊介绍: The explosive growth of wide-area cellular systems and local area wireless networks which promise to make integrated networks a reality, and the development of "wearable" computers and the emergence of "pervasive" computing paradigm, are just the beginning of "The Wireless and Mobile Revolution". The realisation of wireless connectivity is bringing fundamental changes to telecommunications and computing and profoundly affects the way we compute, communicate, and interact. It provides fully distributed and ubiquitous mobile computing and communications, thus bringing an end to the tyranny of geography.
期刊最新文献
Robust min-norm algorithms for coherent sources DOA estimation based on Toeplitz matrix reconstruction methods The construction of the competency model and its application in talent cultivation Bifurcation analysis of a predator-prey model with volume-filling mechanism An improved resource allocation architecture using swarm intelligence for mm-Wave MIMO communication architecture Compatibility issues of wireless sensor network routing in internet of things applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1