Explosive radiation versus old relicts: The complex history of Ethiopian Trechina, with description of a new genus and a new subgenus (Coleoptera, Carabidae, Trechini)
Arnaud Faille, Sylvia Hofmann, Yeshitla Merene, David Hauth, Lars Opgenoorth, Yitbarek Woldehawariat, Joachim Schmidt
{"title":"Explosive radiation versus old relicts: The complex history of Ethiopian Trechina, with description of a new genus and a new subgenus (Coleoptera, Carabidae, Trechini)","authors":"Arnaud Faille, Sylvia Hofmann, Yeshitla Merene, David Hauth, Lars Opgenoorth, Yitbarek Woldehawariat, Joachim Schmidt","doi":"10.3897/dez.70.107425","DOIUrl":null,"url":null,"abstract":"The trechine beetle fauna (Coleoptera, Carabidae) of the Ethiopian Highlands is known to be highly diverse in species, and many species groups were recognized to be characterized by unusual character states of external and genital morphology. Earlier authors described several genera and subgenera of Ethiopian Trechina endemic to certain high mountains of the country. However, the relationships of these species groups and their evolutionary history are unknown so far. Here, we present the first molecular phylogenetic analysis of Ethiopian Trechina, detect several synonymic names under Trechus sensu lato, and introduce two new species groups to the country’s fauna: the monotypic genus Baehria Schmidt & Faille, gen. nov. , with the type species B. separata sp. nov. from Mt. Choke in northern Ethiopia, and the Trechus subgenus Abunetrechus Schmidt & Faille, subgen. nov. , with the type species T. bipartitus Raffray, 1885; this subgenus includes three species of northern Ethiopia. We show that the composition of the Ethiopian fauna is based on multiple events of immigration, which started simultaneously with or some million years after the Oligocene-Early Miocene orogenic events north and south of the Rift Valley. Our results support the habitat island hypothesis for the evolution of the Ethiopian highland fauna. We found no evidence for an alternative hypothesis assuming a close connection of the Trechina immigration to Ethiopia and Pleistocene cooling. We, thus, conclude that the geomorphological development rather than the climatic changes are the main drivers of the diversification of the high-altitude Trechina fauna in Ethiopia.","PeriodicalId":50592,"journal":{"name":"Deutsche Entomologische Zeitschrift","volume":"2022 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deutsche Entomologische Zeitschrift","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/dez.70.107425","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The trechine beetle fauna (Coleoptera, Carabidae) of the Ethiopian Highlands is known to be highly diverse in species, and many species groups were recognized to be characterized by unusual character states of external and genital morphology. Earlier authors described several genera and subgenera of Ethiopian Trechina endemic to certain high mountains of the country. However, the relationships of these species groups and their evolutionary history are unknown so far. Here, we present the first molecular phylogenetic analysis of Ethiopian Trechina, detect several synonymic names under Trechus sensu lato, and introduce two new species groups to the country’s fauna: the monotypic genus Baehria Schmidt & Faille, gen. nov. , with the type species B. separata sp. nov. from Mt. Choke in northern Ethiopia, and the Trechus subgenus Abunetrechus Schmidt & Faille, subgen. nov. , with the type species T. bipartitus Raffray, 1885; this subgenus includes three species of northern Ethiopia. We show that the composition of the Ethiopian fauna is based on multiple events of immigration, which started simultaneously with or some million years after the Oligocene-Early Miocene orogenic events north and south of the Rift Valley. Our results support the habitat island hypothesis for the evolution of the Ethiopian highland fauna. We found no evidence for an alternative hypothesis assuming a close connection of the Trechina immigration to Ethiopia and Pleistocene cooling. We, thus, conclude that the geomorphological development rather than the climatic changes are the main drivers of the diversification of the high-altitude Trechina fauna in Ethiopia.
期刊介绍:
Founded in 1857 as Berliner Entomologische Zeitschrift, Deutsche Entomologische Zeitschrift is one of the World''s oldest international journals of systematic entomology. It publishes original research papers in English on the systematics, taxonomy, phylogeny, comparative morphology, and biogeography of insects. Other arthropods are also considered where of relevance to the biology of insects. The geographical scope of the journal is worldwide.
Deutsche Entomologische Zeitschrift (DEZ) is dedicated to provide an open access, high-quality forum to contribute to the documentation of insect species, their distribution, their properties, and their phylogenetic relationships. All submitted manuscripts are subject to peer-review by the leading specialists for the respective topic. The journal is published in open access high-resolution PDF, semantically enriched HTML and machine-readable XML versions.