PulmoListener

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2023-09-27 DOI:10.1145/3610889
Sejal Bhalla, Salaar Liaqat, Robert Wu, Andrea S. Gershon, Eyal de Lara, Alex Mariakakis
{"title":"PulmoListener","authors":"Sejal Bhalla, Salaar Liaqat, Robert Wu, Andrea S. Gershon, Eyal de Lara, Alex Mariakakis","doi":"10.1145/3610889","DOIUrl":null,"url":null,"abstract":"Prior work has shown the utility of acoustic analysis in controlled settings for assessing chronic obstructive pulmonary disease (COPD) --- one of the most common respiratory diseases that impacts millions of people worldwide. However, such assessments require active user input and may not represent the true characteristics of a patient's voice. We propose PulmoListener, an end-to-end speech processing pipeline that identifies segments of the patient's speech from smartwatch audio collected during daily living and analyzes them to classify COPD symptom severity. To evaluate our approach, we conducted a study with 8 COPD patients over 164 ± 92 days on average. We found that PulmoListener achieved an average sensitivity of 0.79 ± 0.03 and a specificity of 0.83 ± 0.05 per patient when classifying their symptom severity on the same day. PulmoListener can also predict the severity level up to 4 days in advance with an average sensitivity of 0.75 ± 0.02 and a specificity of 0.74 ± 0.07. The results of our study demonstrate the feasibility of leveraging natural speech for monitoring COPD in real-world settings, offering a promising solution for disease management and even diagnosis.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"42 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Prior work has shown the utility of acoustic analysis in controlled settings for assessing chronic obstructive pulmonary disease (COPD) --- one of the most common respiratory diseases that impacts millions of people worldwide. However, such assessments require active user input and may not represent the true characteristics of a patient's voice. We propose PulmoListener, an end-to-end speech processing pipeline that identifies segments of the patient's speech from smartwatch audio collected during daily living and analyzes them to classify COPD symptom severity. To evaluate our approach, we conducted a study with 8 COPD patients over 164 ± 92 days on average. We found that PulmoListener achieved an average sensitivity of 0.79 ± 0.03 and a specificity of 0.83 ± 0.05 per patient when classifying their symptom severity on the same day. PulmoListener can also predict the severity level up to 4 days in advance with an average sensitivity of 0.75 ± 0.02 and a specificity of 0.74 ± 0.07. The results of our study demonstrate the feasibility of leveraging natural speech for monitoring COPD in real-world settings, offering a promising solution for disease management and even diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PulmoListener
先前的工作表明,声学分析在受控环境中用于评估慢性阻塞性肺疾病(COPD)的效用,慢性阻塞性肺疾病是影响全球数百万人的最常见的呼吸系统疾病之一。然而,这种评估需要用户主动输入,可能不能代表患者声音的真实特征。我们提出PulmoListener,一个端到端语音处理管道,从日常生活中收集的智能手表音频中识别患者的语音片段,并对其进行分析,以分类COPD症状的严重程度。为了评估我们的方法,我们对8名COPD患者进行了一项研究,平均随访时间为164±92天。我们发现PulmoListener在对患者同一天的症状严重程度进行分类时,平均灵敏度为0.79±0.03,特异性为0.83±0.05。PulmoListener还可以提前4天预测严重程度,平均灵敏度为0.75±0.02,特异性为0.74±0.07。我们的研究结果证明了在现实环境中利用自然语音监测COPD的可行性,为疾病管理甚至诊断提供了一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines UniFi PASTEL Unobtrusive Air Leakage Estimation for Earables with In-ear Microphones PyroSense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1