{"title":"RFIS-HI: a new health indicator for quantitative condition monitoring of the bearing under variable speed conditions","authors":"Weipeng Ma, Yaoxiang Yu, Liang Guo, Mengui Qian, Hongli Gao","doi":"10.1177/14759217231203244","DOIUrl":null,"url":null,"abstract":"The health indicator (HI) plays a crucial role in the condition monitoring of the rolling bearing. However, most existing HIs exhibit significant fluctuations when the speed changes. To address the issue, this paper proposes a new HI namely reweighted fault impact strength (RFIS)-HI. First, sub-signals are obtained through a frequency division strategy, and corresponding resampled signals are derived using order tracking. Second, the average impact peak in the time domain is acquired to measure the impact of the signal. According to fault characteristic order (FCO), the ratio of FCOs summation to noise amplitude in the frequency domain is obtained to measure periodicity. Then, the FISgram is constructed for selecting the optimal frequency band. To better quantify the degradation degree of the bearing, different weights are assigned and optimized for constructing RFIS. Finally, the influence of rotational speed on RFIS is eliminated by utilizing prior knowledge. Taking the first 10% of the dataset as baseline data, RFIS-HI is constructed through relative similarity. In this paper, a bearing dataset under time-varying speed conditions and an XJTU-SY dataset are used for verification. Results show that the proposed HI can achieve better trendability, scale similarity, and stability.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14759217231203244","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The health indicator (HI) plays a crucial role in the condition monitoring of the rolling bearing. However, most existing HIs exhibit significant fluctuations when the speed changes. To address the issue, this paper proposes a new HI namely reweighted fault impact strength (RFIS)-HI. First, sub-signals are obtained through a frequency division strategy, and corresponding resampled signals are derived using order tracking. Second, the average impact peak in the time domain is acquired to measure the impact of the signal. According to fault characteristic order (FCO), the ratio of FCOs summation to noise amplitude in the frequency domain is obtained to measure periodicity. Then, the FISgram is constructed for selecting the optimal frequency band. To better quantify the degradation degree of the bearing, different weights are assigned and optimized for constructing RFIS. Finally, the influence of rotational speed on RFIS is eliminated by utilizing prior knowledge. Taking the first 10% of the dataset as baseline data, RFIS-HI is constructed through relative similarity. In this paper, a bearing dataset under time-varying speed conditions and an XJTU-SY dataset are used for verification. Results show that the proposed HI can achieve better trendability, scale similarity, and stability.
期刊介绍:
Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.