{"title":"Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity","authors":"Weizhu Bao, Chushan Wang","doi":"10.1090/mcom/3900","DOIUrl":null,"url":null,"abstract":"We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis rho right-parenthesis equals rho Superscript sigma\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mi>σ<!-- σ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(\\rho ) = \\rho ^\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho equals StartAbsoluteValue psi EndAbsoluteValue squared\"> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>=</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\rho =|\\psi |^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the density with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"psi\"> <mml:semantics> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the wave function and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the exponent of the semi-smooth nonlinearity. Under the assumption of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H squared\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-solution of the NLSE, we prove error bounds at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript one half plus sigma Baseline plus h Superscript 1 plus 2 sigma Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau ^{\\frac {1}{2}+\\sigma } + h^{1+2\\sigma })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau plus h squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau + h^{2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than sigma less-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0>\\sigma \\leq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\geq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively, and an error bound at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript one half Baseline plus h right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:msup> <mml:mo>+</mml:mo> <mml:mi>h</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau ^\\frac {1}{2} + h)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\geq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\"application/x-tex\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ<!-- τ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the mesh size and time step size, respectively. In addition, when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one half greater-than sigma greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\frac {1}{2}>\\sigma >1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and under the assumption of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H cubed\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-solution of the NLSE, we show an error bound at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript sigma Baseline plus h Superscript 2 sigma Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau ^{\\sigma } + h^{2\\sigma })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than sigma less-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0 > \\sigma \\leq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and to establish an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"l Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>l</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">l^\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-conditional <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stability to obtain the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"l Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>l</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">l^\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bound of the numerical solution by using the mathematical induction and the error estimates for the case of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\ge \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity f(ρ)=ρσf(\rho ) = \rho ^\sigma, where ρ=|ψ|2\rho =|\psi |^2 is the density with ψ\psi the wave function and σ>0\sigma >0 is the exponent of the semi-smooth nonlinearity. Under the assumption of H2H^2-solution of the NLSE, we prove error bounds at O(τ12+σ+h1+2σ)O(\tau ^{\frac {1}{2}+\sigma } + h^{1+2\sigma }) and O(τ+h2)O(\tau + h^{2}) in L2L^2-norm for 0>σ≤120>\sigma \leq \frac {1}{2} and σ≥12\sigma \geq \frac {1}{2}, respectively, and an error bound at O(τ12+h)O(\tau ^\frac {1}{2} + h) in H1H^1-norm for σ≥12\sigma \geq \frac {1}{2}, where hh and τ\tau are the mesh size and time step size, respectively. In addition, when 12>σ>1\frac {1}{2}>\sigma >1 and under the assumption of H3H^3-solution of the NLSE, we show an error bound at O(τσ+h2σ)O(\tau ^{\sigma } + h^{2\sigma }) in H1H^1-norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional L2L^2-stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of 0>σ≤120 > \sigma \leq \frac {1}{2}, and to establish an l∞l^\infty-conditional H1H^1-stability to obtain the l∞l^\infty-bound of the numerical solution by using the mathematical induction and the error estimates for the case of σ≥12\sigma \ge \frac {1}{2}; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.