Soumyaranjan Mishra, Buddhima Indraratna, Cholachat Rujikiatkamjorn, Trung Ngo
{"title":"Use of recycled tyre segments to enhance the stability of ballasted track by increased confinement","authors":"Soumyaranjan Mishra, Buddhima Indraratna, Cholachat Rujikiatkamjorn, Trung Ngo","doi":"10.1139/cgj-2022-0666","DOIUrl":null,"url":null,"abstract":"The most common railway ballast is produced by quarrying, and its mechanical characteristics are crucial for both stability and drainage for safer and faster rail operations. Ballasted tracks have certain drawbacks, primarily because ballast starts to degrade over time. In this regard, reducing the rate of ballast degradation is vital to enhance track longevity and minimise maintenance costs. This paper demonstrates how segments of waste rubber tyres (e.g. 3m in diameter) from the mining industry can improve stability of tracks, while contributing to reduced ballast deformation and degradation. By placing arched segments along the track shoulders beyond the edge of sleepers, the in-situ lateral confining pressure can be increased from 20-25 kPa (standard track) to 40-50 kPa. This novel idea of Confined-Caterpillar Track (CCT) was tested at a prototype physical model (1:1 scale) at the National Facility for the Heavy-haul Railroad Testing (NFHRT), and the experimental outcomes compared to the performance of a conventional track. Apart from constributing to at least 25% saving of quarried aggregates, the test results prove that the CCT concept can curtail the lateral displacement and settlement of the ballast layer, while reducing particle breakage and effecting significant stress reduction in the underlying substructure layers.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"14 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cgj-2022-0666","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The most common railway ballast is produced by quarrying, and its mechanical characteristics are crucial for both stability and drainage for safer and faster rail operations. Ballasted tracks have certain drawbacks, primarily because ballast starts to degrade over time. In this regard, reducing the rate of ballast degradation is vital to enhance track longevity and minimise maintenance costs. This paper demonstrates how segments of waste rubber tyres (e.g. 3m in diameter) from the mining industry can improve stability of tracks, while contributing to reduced ballast deformation and degradation. By placing arched segments along the track shoulders beyond the edge of sleepers, the in-situ lateral confining pressure can be increased from 20-25 kPa (standard track) to 40-50 kPa. This novel idea of Confined-Caterpillar Track (CCT) was tested at a prototype physical model (1:1 scale) at the National Facility for the Heavy-haul Railroad Testing (NFHRT), and the experimental outcomes compared to the performance of a conventional track. Apart from constributing to at least 25% saving of quarried aggregates, the test results prove that the CCT concept can curtail the lateral displacement and settlement of the ballast layer, while reducing particle breakage and effecting significant stress reduction in the underlying substructure layers.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.