{"title":"Complete Deterministic Dynamics and Spectral Decomposition of the Linear Ensemble Kalman Inversion","authors":"Leon Bungert, Philipp Wacker","doi":"10.1137/21m1429461","DOIUrl":null,"url":null,"abstract":"The ensemble Kalman inversion (EKI) for the solution of Bayesian inverse problems of type , with being an unknown parameter, a given datum, and measurement noise, is a powerful tool usually derived from a sequential Monte Carlo point of view. It describes the dynamics of an ensemble of particles , whose initial empirical measure is sampled from the prior, evolving over an artificial time toward an approximate solution of the inverse problem, with emulating the posterior, and corresponding to the underregularized minimum-norm solution of the inverse problem. Using spectral techniques, we provide a complete description of the deterministic dynamics of EKI and its asymptotic behavior in parameter space. In particular, we analyze the dynamics of naive EKI and mean-field EKI with a special focus on their time asymptotic behavior. Furthermore, we show that—even in the deterministic case—residuals in parameter space do not decrease monotonously in the Euclidean norm and suggest a problem-adapted norm, where monotonicity can be proved. Finally, we derive a system of ordinary differential equations governing the spectrum and eigenvectors of the covariance matrix. While the analysis is aimed at the EKI, we believe that it can be applied to understand more general particle-based dynamical systems.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"51 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1429461","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
The ensemble Kalman inversion (EKI) for the solution of Bayesian inverse problems of type , with being an unknown parameter, a given datum, and measurement noise, is a powerful tool usually derived from a sequential Monte Carlo point of view. It describes the dynamics of an ensemble of particles , whose initial empirical measure is sampled from the prior, evolving over an artificial time toward an approximate solution of the inverse problem, with emulating the posterior, and corresponding to the underregularized minimum-norm solution of the inverse problem. Using spectral techniques, we provide a complete description of the deterministic dynamics of EKI and its asymptotic behavior in parameter space. In particular, we analyze the dynamics of naive EKI and mean-field EKI with a special focus on their time asymptotic behavior. Furthermore, we show that—even in the deterministic case—residuals in parameter space do not decrease monotonously in the Euclidean norm and suggest a problem-adapted norm, where monotonicity can be proved. Finally, we derive a system of ordinary differential equations governing the spectrum and eigenvectors of the covariance matrix. While the analysis is aimed at the EKI, we believe that it can be applied to understand more general particle-based dynamical systems.
期刊介绍:
SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.