Deep Multitask Multiagent Reinforcement Learning With Knowledge Transfer

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Games Pub Date : 2023-09-19 DOI:10.1109/TG.2023.3316697
Yuxiang Mai;Yifan Zang;Qiyue Yin;Wancheng Ni;Kaiqi Huang
{"title":"Deep Multitask Multiagent Reinforcement Learning With Knowledge Transfer","authors":"Yuxiang Mai;Yifan Zang;Qiyue Yin;Wancheng Ni;Kaiqi Huang","doi":"10.1109/TG.2023.3316697","DOIUrl":null,"url":null,"abstract":"Despite the potential of multiagent reinforcement learning (MARL) in addressing numerous complex tasks, training a single team of MARL agents to handle multiple diverse team tasks remains a challenge. In this article, we introduce a novel Multitask method based on Knowledge Transfer in cooperative MARL (MKT-MARL). By learning from task-specific teachers, our approach empowers a single team of agents to attain expert-level performance in multiple tasks. MKT-MARL utilizes a knowledge distillation algorithm specifically designed for the multiagent architecture, which rapidly learns a team control policy incorporating common coordinated knowledge from the experience of task-specific teachers. In addition, we enhance this training with teacher annealing, gradually shifting the model's learning from distillation toward environmental rewards. This enhancement helps the multitask model surpass its single-task teachers. We extensively evaluate our algorithm using two commonly-used benchmarks: \n<italic>StarCraft II</i>\n micromanagement and multiagent particle environment. The experimental results demonstrate that our algorithm outperforms both the single-task teachers and a jointly trained team of agents. Extensive ablation experiments illustrate the effectiveness of the supervised knowledge transfer and the teacher annealing strategy.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 3","pages":"566-576"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10255234/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the potential of multiagent reinforcement learning (MARL) in addressing numerous complex tasks, training a single team of MARL agents to handle multiple diverse team tasks remains a challenge. In this article, we introduce a novel Multitask method based on Knowledge Transfer in cooperative MARL (MKT-MARL). By learning from task-specific teachers, our approach empowers a single team of agents to attain expert-level performance in multiple tasks. MKT-MARL utilizes a knowledge distillation algorithm specifically designed for the multiagent architecture, which rapidly learns a team control policy incorporating common coordinated knowledge from the experience of task-specific teachers. In addition, we enhance this training with teacher annealing, gradually shifting the model's learning from distillation toward environmental rewards. This enhancement helps the multitask model surpass its single-task teachers. We extensively evaluate our algorithm using two commonly-used benchmarks: StarCraft II micromanagement and multiagent particle environment. The experimental results demonstrate that our algorithm outperforms both the single-task teachers and a jointly trained team of agents. Extensive ablation experiments illustrate the effectiveness of the supervised knowledge transfer and the teacher annealing strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带知识转移的深度多任务多代理强化学习
尽管多代理强化学习(MARL)在处理众多复杂任务方面潜力巨大,但训练一个由 MARL 代理组成的团队来处理多个不同的团队任务仍然是一项挑战。在这篇文章中,我们介绍了一种基于合作式 MARL(MKT-MARL)知识转移的新型多任务方法。通过向特定任务的教师学习,我们的方法可使单个代理团队在多个任务中达到专家级表现。MKT-MARL 利用专为多代理架构设计的知识提炼算法,快速学习团队控制策略,其中包含从特定任务教师的经验中获得的共同协调知识。此外,我们还通过教师退火来加强这种训练,逐渐将模型的学习从蒸馏转向环境奖励。这种增强有助于多任务模型超越其单一任务教师。我们使用两个常用基准对我们的算法进行了广泛评估:星际争霸 II》微观管理和多代理粒子环境。实验结果表明,我们的算法优于单任务教师和联合训练的代理团队。广泛的消融实验说明了监督知识转移和教师退火策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
期刊最新文献
Table of Contents IEEE Computational Intelligence Society Information IEEE Transactions on Games Publication Information Large Language Models and Games: A Survey and Roadmap Investigating Efficiency of Free-For-All Models in a Matchmaking Context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1