{"title":"A masking-based federated singular value decomposition method for anomaly detection in industrial internet of things","authors":"Olena Hordiichuk Bublivska, Halyna Beshley, Natalia Kryvinska, Mykola Beshley","doi":"10.1504/ijwgs.2023.133502","DOIUrl":null,"url":null,"abstract":"The industrial internet of things (IIoT) is a flexible and scalable manufacturing system that can collect and analyse data from sensors based on machine learning, cloud, and edge computing. Recommendation systems can identify patterns in big data and reduce irrelevant data, with the singular value decomposition (SVD) algorithm being commonly used. Based on the found regularities in the data, it is possible to predict the most probable future events, such as emergency shutdowns of equipment, the occurrence of emergencies, etc. This paper explores the SVD method for anomaly detection in IIoT and proposes the federated singular value decomposition (FedSVD) method, which better protects large-scale IIoT data privacy. Results show FedSVD has greater accuracy and duration of calculations. A masking-based FedSVD method is proposed for anomaly detection and data protection. Choosing the optimal algorithm for IIoT and recommendation systems can automate the processing of critical parameters and improve efficiency.","PeriodicalId":54935,"journal":{"name":"International Journal of Web and Grid Services","volume":"27 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web and Grid Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijwgs.2023.133502","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The industrial internet of things (IIoT) is a flexible and scalable manufacturing system that can collect and analyse data from sensors based on machine learning, cloud, and edge computing. Recommendation systems can identify patterns in big data and reduce irrelevant data, with the singular value decomposition (SVD) algorithm being commonly used. Based on the found regularities in the data, it is possible to predict the most probable future events, such as emergency shutdowns of equipment, the occurrence of emergencies, etc. This paper explores the SVD method for anomaly detection in IIoT and proposes the federated singular value decomposition (FedSVD) method, which better protects large-scale IIoT data privacy. Results show FedSVD has greater accuracy and duration of calculations. A masking-based FedSVD method is proposed for anomaly detection and data protection. Choosing the optimal algorithm for IIoT and recommendation systems can automate the processing of critical parameters and improve efficiency.
期刊介绍:
Web services are providing declarative interfaces to services offered by systems on the Internet, including messaging protocols, standard interfaces, directory services, as well as security layers, for efficient/effective business application integration. Grid computing has emerged as a global platform to support organisations for coordinated sharing of distributed data, applications, and processes. It has also started to leverage web services to define standard interfaces for business services. IJWGS addresses web and grid service technology, emphasising issues of architecture, implementation, and standardisation.