{"title":"Assessment and classification of grid stability with cost-sensitive stacked ensemble classifier","authors":"Karthikeyan Ramasamy, Arivoli Sundaramurthy, Durgadevi Velusamy","doi":"10.1080/00051144.2023.2218164","DOIUrl":null,"url":null,"abstract":"Smart Grid is an intelligent power grid with a bidirectional flow of electricity and information, that applies intelligent techniques to operate the grid autonomously near the stability limit. An intelligent technique is developed to identify and predict the abnormalities due to changes in customer behaviour and the unexpected disruption in the grid. A cost-sensitive stacked ensemble classifier (CS-SEC) is proposed for predicting the operations in smart grid that combines four cost-sensitive base classifiers, namely Extreme gradient boosting, Naive Bayes, Nu-support vector machine and Random forest at level-1 and the support vector machine as the meta classifier in level-2. The meta classifier uses the probability of prediction of the first-level classifiers with stratified 5-fold cross-validation to predict the decentralized smart grid stability. The proposed stacked ensemble classifier achieved an accuracy of 98.6% with specificity, recall and precision of 98.34%, 99.0% and 99.06%, respectively. Extensive experimental evaluation and results show that the proposed CS-SEC provides an accurate prediction of grid stability compared with other state-of-the-art models. The results reveal the robustness and competency of the proposed CS-SECs with optimized parameters.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":"10 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2218164","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Smart Grid is an intelligent power grid with a bidirectional flow of electricity and information, that applies intelligent techniques to operate the grid autonomously near the stability limit. An intelligent technique is developed to identify and predict the abnormalities due to changes in customer behaviour and the unexpected disruption in the grid. A cost-sensitive stacked ensemble classifier (CS-SEC) is proposed for predicting the operations in smart grid that combines four cost-sensitive base classifiers, namely Extreme gradient boosting, Naive Bayes, Nu-support vector machine and Random forest at level-1 and the support vector machine as the meta classifier in level-2. The meta classifier uses the probability of prediction of the first-level classifiers with stratified 5-fold cross-validation to predict the decentralized smart grid stability. The proposed stacked ensemble classifier achieved an accuracy of 98.6% with specificity, recall and precision of 98.34%, 99.0% and 99.06%, respectively. Extensive experimental evaluation and results show that the proposed CS-SEC provides an accurate prediction of grid stability compared with other state-of-the-art models. The results reveal the robustness and competency of the proposed CS-SECs with optimized parameters.
AutomatikaAUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍:
AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope.
AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.