Si Quang Nguyen, Anh Tu Tran, Thi Thuy Thai, Phuoc Dan Nguyen, Thi Minh Tam Le, Sarah Tweet
{"title":"Research on the exchange between groundwater of Cu Chi district, HCM City and Sai Gon river water by isotope techniques","authors":"Si Quang Nguyen, Anh Tu Tran, Thi Thuy Thai, Phuoc Dan Nguyen, Thi Minh Tam Le, Sarah Tweet","doi":"10.32508/stdjsee.v7i1.702","DOIUrl":null,"url":null,"abstract":"In the earth's water cycle, groundwater is the most difficult component to assess. Scientists have long used isotopes to find out whether groundwater is replenished, and where it comes from. Water from different locations has different isotopic characteristics and is known as a \"fingerprint\". Scientists use these fingerprints to track the movement of water along its path throughout the entire water cycle. The isotope ratios 2H/1H and 18O/16O in water provide a wealth of information about the separation of water molecules in the hydrosphere cycle. The relationship between the isotope ratios of water in an area characterized by the local meteorological waterline, known as a reliable reference value for studies to determine the origin of groundwater recharge. soil. The research paper uses 2H and 18O isotopic data monthly monitored at 03 wells of households, 01 independent monitoring well in the Pleistocene aquifer along the Saigon River, and water data of the Saigon River. The initial research results show that the Pleistocene aquifer in Cu Chi district and the surface water of the Saigon river had an exchange at the end of the dry season - the beginning of the rainy season, from February to May 2019 respectively, and there was a direct replenishment of the surface water. from rainwater.","PeriodicalId":489490,"journal":{"name":"Tạp chí Khoa học và Công nghệ: Chuyên san Khoa học Trái đất và Môi trường","volume":"1199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tạp chí Khoa học và Công nghệ: Chuyên san Khoa học Trái đất và Môi trường","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32508/stdjsee.v7i1.702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the earth's water cycle, groundwater is the most difficult component to assess. Scientists have long used isotopes to find out whether groundwater is replenished, and where it comes from. Water from different locations has different isotopic characteristics and is known as a "fingerprint". Scientists use these fingerprints to track the movement of water along its path throughout the entire water cycle. The isotope ratios 2H/1H and 18O/16O in water provide a wealth of information about the separation of water molecules in the hydrosphere cycle. The relationship between the isotope ratios of water in an area characterized by the local meteorological waterline, known as a reliable reference value for studies to determine the origin of groundwater recharge. soil. The research paper uses 2H and 18O isotopic data monthly monitored at 03 wells of households, 01 independent monitoring well in the Pleistocene aquifer along the Saigon River, and water data of the Saigon River. The initial research results show that the Pleistocene aquifer in Cu Chi district and the surface water of the Saigon river had an exchange at the end of the dry season - the beginning of the rainy season, from February to May 2019 respectively, and there was a direct replenishment of the surface water. from rainwater.