Rana Afkhami , Mohammad Javad Varidi , Mehdi Varidi , Farzin Hadizadeh
{"title":"Boosting emulsion properties: The role of β-sheet content and fibril length in soy protein isolate emulsions","authors":"Rana Afkhami , Mohammad Javad Varidi , Mehdi Varidi , Farzin Hadizadeh","doi":"10.1016/j.foodhyd.2023.109513","DOIUrl":null,"url":null,"abstract":"<div><p><span>This study aimed to research the effects of β-sheet content and fibril length in three categories ((low, medium, and high β-sheet) and (short, medium, and long fibrils)) on soy protein isolate (SPI) emulsions. The highest surface hydrophobicity (H</span><sub>0</sub><span>) (27,600 ± 100) was detected in the sample with the highest β-sheet content and the longest fibril length. The interfacial tension presented that the sample with the highest β-sheet content and longest fibril length could adsorb quickly at the oil (O)/water (W) interface. The emulsion stabilized by high β-sheet content and long fibril length had a lower droplet size (202 ± 4.35 nm) with more homogenous distribution and higher viscosity (8.75 ± 0.13 cP) due to more entanglement. According to the environmental stresses results (i.e., various ionic strengths (0–400 mM), pH changes (2–9.5), thermal treatment, and 30 days of storage), the emulsion prepared by the sample with the highest β-sheet content and the longest fibril length was more stable than other emulsions. Moreover, all emulsions were unstable against freeze-thaw treatment. Finally, it could be concluded that higher content of β-sheet and longer fibril led to the stability of emulsion through higher initial absorption at the O/W interface, formation of a continuous and thicker membrane coating at the O/W interfaces, viscosity improvement, and H</span><sub>0</sub> enhancement.</p></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"149 ","pages":"Article 109513"},"PeriodicalIF":11.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X23010597","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to research the effects of β-sheet content and fibril length in three categories ((low, medium, and high β-sheet) and (short, medium, and long fibrils)) on soy protein isolate (SPI) emulsions. The highest surface hydrophobicity (H0) (27,600 ± 100) was detected in the sample with the highest β-sheet content and the longest fibril length. The interfacial tension presented that the sample with the highest β-sheet content and longest fibril length could adsorb quickly at the oil (O)/water (W) interface. The emulsion stabilized by high β-sheet content and long fibril length had a lower droplet size (202 ± 4.35 nm) with more homogenous distribution and higher viscosity (8.75 ± 0.13 cP) due to more entanglement. According to the environmental stresses results (i.e., various ionic strengths (0–400 mM), pH changes (2–9.5), thermal treatment, and 30 days of storage), the emulsion prepared by the sample with the highest β-sheet content and the longest fibril length was more stable than other emulsions. Moreover, all emulsions were unstable against freeze-thaw treatment. Finally, it could be concluded that higher content of β-sheet and longer fibril led to the stability of emulsion through higher initial absorption at the O/W interface, formation of a continuous and thicker membrane coating at the O/W interfaces, viscosity improvement, and H0 enhancement.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.