Yuta Kishimoto, Sachiko Ide, Toyohiro Naito, Yuta Nakashima, Yoshitaka Nakanishi, Noritada Kaji
{"title":"Development of a Microfluidic Ion Current Measurement System for Single-Microplastic Detection","authors":"Yuta Kishimoto, Sachiko Ide, Toyohiro Naito, Yuta Nakashima, Yoshitaka Nakanishi, Noritada Kaji","doi":"10.20965/jrm.2023.p1193","DOIUrl":null,"url":null,"abstract":"Microplastics (MPs) can adsorb heavy metals and metalloids and may cause a potential health hazard. Precise measurements of their size, shape, composition, and concentration at a single-MP level are important to evaluate their potential toxicity and identify their original source. However, current single-MP analytical methods such as micro-Raman spectroscopy and scanning electron microscopy have low throughput. Therefore, in this study, we applied the ion current sensing method, which has been used for single cell analysis, to single-MP analysis and examined whether size measurement and composition analysis of MPs at the single particle level are possible. In single-MP measurements, plastic particles must be mono-dispersed in solution at least within the measurement time. The agglomeration behavior was carefully observed after adding sodium dodecyl sulfate to tris-borate-EDTA buffer at 2–16 mM. Under these conditions, the size of polystyrene beads could be measured using the ion current sensing under the mono-dispersed condition. Next, ion current sensing was performed on four pseudo MPs fabricated from different materials (polyethylene, polyethylene terephthalate, polypropylene, and polyvinyl chloride) that were mechanically grazed and UV-irradiated to imitate real marine MPs. Although significant differences in the ion current signals from different material MPs were not observed, fast (100 MPs within 2 s) and precise measurements in the MPs’ sizes at a single-MP level were successfully achieved.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) can adsorb heavy metals and metalloids and may cause a potential health hazard. Precise measurements of their size, shape, composition, and concentration at a single-MP level are important to evaluate their potential toxicity and identify their original source. However, current single-MP analytical methods such as micro-Raman spectroscopy and scanning electron microscopy have low throughput. Therefore, in this study, we applied the ion current sensing method, which has been used for single cell analysis, to single-MP analysis and examined whether size measurement and composition analysis of MPs at the single particle level are possible. In single-MP measurements, plastic particles must be mono-dispersed in solution at least within the measurement time. The agglomeration behavior was carefully observed after adding sodium dodecyl sulfate to tris-borate-EDTA buffer at 2–16 mM. Under these conditions, the size of polystyrene beads could be measured using the ion current sensing under the mono-dispersed condition. Next, ion current sensing was performed on four pseudo MPs fabricated from different materials (polyethylene, polyethylene terephthalate, polypropylene, and polyvinyl chloride) that were mechanically grazed and UV-irradiated to imitate real marine MPs. Although significant differences in the ion current signals from different material MPs were not observed, fast (100 MPs within 2 s) and precise measurements in the MPs’ sizes at a single-MP level were successfully achieved.