Behavior Learning System for Robot Soccer Using Neural Network

IF 0.9 Q4 ROBOTICS Journal of Robotics and Mechatronics Pub Date : 2023-10-20 DOI:10.20965/jrm.2023.p1385
Moeko Tominaga, Yasunori Takemura, Kazuo Ishii
{"title":"Behavior Learning System for Robot Soccer Using Neural Network","authors":"Moeko Tominaga, Yasunori Takemura, Kazuo Ishii","doi":"10.20965/jrm.2023.p1385","DOIUrl":null,"url":null,"abstract":"With technological developments, the prospect of a human-robot symbiotic society has emerged. A soccer game has characteristics similar to those expected in such a society. Soccer is a multiagent game in which the strategy employed depends on each agent’s position and actions. This paper discusses the results of the development of a learning system that uses a self-organizing map to select behaviors depending on the scenario (two-dimensional absolute coordinates of the agent, other agents, and the ball). The system can reproduce the action-selection algorithms of all the players on a certain team, and the robot can instantly select the next cooperative action from information obtained during the game. Thus, common-sense rules can be shared to learn an action-selection algorithm for a set of both human and robot agents.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":"46 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

With technological developments, the prospect of a human-robot symbiotic society has emerged. A soccer game has characteristics similar to those expected in such a society. Soccer is a multiagent game in which the strategy employed depends on each agent’s position and actions. This paper discusses the results of the development of a learning system that uses a self-organizing map to select behaviors depending on the scenario (two-dimensional absolute coordinates of the agent, other agents, and the ball). The system can reproduce the action-selection algorithms of all the players on a certain team, and the robot can instantly select the next cooperative action from information obtained during the game. Thus, common-sense rules can be shared to learn an action-selection algorithm for a set of both human and robot agents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的机器人足球行为学习系统
随着科技的发展,人机共生社会的前景已经出现。足球比赛具有与这样一个社会所期望的相似的特征。足球是一种多智能体游戏,其中所采用的策略取决于每个智能体的位置和行动。本文讨论了一个学习系统的开发结果,该系统使用自组织地图根据场景(智能体、其他智能体和球的二维绝对坐标)选择行为。该系统可以重现某一团队中所有参与者的动作选择算法,机器人可以根据游戏过程中获得的信息即时选择下一个合作动作。因此,可以共享常识性规则来学习一组人类和机器人代理的动作选择算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
36.40%
发文量
134
期刊介绍: First published in 1989, the Journal of Robotics and Mechatronics (JRM) has the longest publication history in the world in this field, publishing a total of over 2,000 works exclusively on robotics and mechatronics from the first number. The Journal publishes academic papers, development reports, reviews, letters, notes, and discussions. The JRM is a peer-reviewed journal in fields such as robotics, mechatronics, automation, and system integration. Its editorial board includes wellestablished researchers and engineers in the field from the world over. The scope of the journal includes any and all topics on robotics and mechatronics. As a key technology in robotics and mechatronics, it includes actuator design, motion control, sensor design, sensor fusion, sensor networks, robot vision, audition, mechanism design, robot kinematics and dynamics, mobile robot, path planning, navigation, SLAM, robot hand, manipulator, nano/micro robot, humanoid, service and home robots, universal design, middleware, human-robot interaction, human interface, networked robotics, telerobotics, ubiquitous robot, learning, and intelligence. The scope also includes applications of robotics and automation, and system integrations in the fields of manufacturing, construction, underwater, space, agriculture, sustainability, energy conservation, ecology, rescue, hazardous environments, safety and security, dependability, medical, and welfare.
期刊最新文献
Simplified System Integration of Robust Mobile Robot for Initial Pose Estimation for the Nakanoshima Robot Challenge Robust Cooperative Transport System with Model Error Compensator Using Multiple Robots with Suction Cups Learning Variable Admittance Control for Human-Robot Collaborative Manipulation High-Resolution Point Cloud Registration Method for Three-Dimensional Piping Measurements An Inchworm Robot with Self-Healing Ability Using SMA Actuators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1