Adaptive Kinematic Control of Underwater Cable-Driven Parallel Robot

Pub Date : 2023-10-20 DOI:10.20965/jrm.2023.p1300
Katutoshi Kodama, Akihiro Morinaga, Ikuo Yamamoto
{"title":"Adaptive Kinematic Control of Underwater Cable-Driven Parallel Robot","authors":"Katutoshi Kodama, Akihiro Morinaga, Ikuo Yamamoto","doi":"10.20965/jrm.2023.p1300","DOIUrl":null,"url":null,"abstract":"We previously proposed on the underwater cable-driven parallel robot (UCDPR), a system comprising multiple surface robots, and designed a modeling and trajectory tracking control method for it. However, the conventional trajectory tracking control of the UCDPR using the kinematic controller faced several issues. These included challenges in control gain tuning due to model uncertainty and a decline in trajectory tracking performance caused by changes in system characteristics due to environmental factors like current velocity. In response, this study focuses on the development of an adaptive kinematic controller. The aim is to mitigate the effects of uncertainties and other factors while ensuring effective trajectory tracking. This is achieved by incorporating an adaptive modification term into the conventional kinematic controller, which can be tuned adaptively in real-time. To validate the effectiveness of the adaptive kinematic controller, we conducted numerical simulations using a planar 2-DOF UCDPR.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We previously proposed on the underwater cable-driven parallel robot (UCDPR), a system comprising multiple surface robots, and designed a modeling and trajectory tracking control method for it. However, the conventional trajectory tracking control of the UCDPR using the kinematic controller faced several issues. These included challenges in control gain tuning due to model uncertainty and a decline in trajectory tracking performance caused by changes in system characteristics due to environmental factors like current velocity. In response, this study focuses on the development of an adaptive kinematic controller. The aim is to mitigate the effects of uncertainties and other factors while ensuring effective trajectory tracking. This is achieved by incorporating an adaptive modification term into the conventional kinematic controller, which can be tuned adaptively in real-time. To validate the effectiveness of the adaptive kinematic controller, we conducted numerical simulations using a planar 2-DOF UCDPR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
水下索驱动并联机器人的自适应运动控制
提出了由多个水面机器人组成的水下缆索驱动并联机器人(UCDPR)系统,并设计了其建模和轨迹跟踪控制方法。然而,传统的基于运动控制器的UCDPR轨迹跟踪控制存在一些问题。其中包括由于模型不确定性导致的控制增益调整挑战,以及由于当前速度等环境因素导致的系统特性变化导致的轨迹跟踪性能下降。因此,本研究着重于自适应运动控制器的开发。其目的是减轻不确定性和其他因素的影响,同时确保有效的轨迹跟踪。这是通过在传统的运动控制器中加入一个自适应修正项来实现的,它可以实时自适应地进行调整。为了验证自适应运动控制器的有效性,我们使用平面2-DOF UCDPR进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1