Cues to individuality in Greylag Goose faces: algorithmic discrimination and behavioral field tests

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-09-27 DOI:10.1007/s10336-023-02113-4
Sonia Kleindorfer, Benedikt Heger, Damian Tohl, Didone Frigerio, Josef Hemetsberger, Leonida Fusani, W. Tecumseh Fitch, Diane Colombelli-Négrel
{"title":"Cues to individuality in Greylag Goose faces: algorithmic discrimination and behavioral field tests","authors":"Sonia Kleindorfer, Benedikt Heger, Damian Tohl, Didone Frigerio, Josef Hemetsberger, Leonida Fusani, W. Tecumseh Fitch, Diane Colombelli-Négrel","doi":"10.1007/s10336-023-02113-4","DOIUrl":null,"url":null,"abstract":"Abstract Cues to individuality, and the corresponding capacity for individual-level discrimination, can allow individually specific investment by conspecifics into offspring, partners, neighbors or competitors. Here we investigated possible cues to individuality via faces in an ancient avian lineage, the Greylag Goose ( Anser anser ). Konrad Lorenz could famously name each Greylag Goose in ‘his’ flock from a photograph. Confirming this anecdotal observation, we developed facial recognition software that can reliably (~ 97% accuracy) assign a goose face to a goose ID within a database, using bill morphology normalized during photo preparation. To explore conspecific detection of individuality cues, we erected life-size photos of geese and measured subjects’ responses to photos of themselves (unfamiliar goose), their partner, and another flock mate. Geese displayed significantly greater affiliative response to photos of their partners, providing evidence that geese can use two-dimensional images as cues to determine social category (partner/non-partner) and/or individual-level recognition. Our methods provide novel approaches to automatically detect and monitor geese and to test avian cognition. Our approach may also create new opportunities for species monitoring approaches more generally using photographic images and citizen-science engagement.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10336-023-02113-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Cues to individuality, and the corresponding capacity for individual-level discrimination, can allow individually specific investment by conspecifics into offspring, partners, neighbors or competitors. Here we investigated possible cues to individuality via faces in an ancient avian lineage, the Greylag Goose ( Anser anser ). Konrad Lorenz could famously name each Greylag Goose in ‘his’ flock from a photograph. Confirming this anecdotal observation, we developed facial recognition software that can reliably (~ 97% accuracy) assign a goose face to a goose ID within a database, using bill morphology normalized during photo preparation. To explore conspecific detection of individuality cues, we erected life-size photos of geese and measured subjects’ responses to photos of themselves (unfamiliar goose), their partner, and another flock mate. Geese displayed significantly greater affiliative response to photos of their partners, providing evidence that geese can use two-dimensional images as cues to determine social category (partner/non-partner) and/or individual-level recognition. Our methods provide novel approaches to automatically detect and monitor geese and to test avian cognition. Our approach may also create new opportunities for species monitoring approaches more generally using photographic images and citizen-science engagement.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
灰雁面部的个性线索:算法歧视和行为现场测试
个体特征线索和相应的个体层面歧视能力,可以允许个体对后代、伴侣、邻居或竞争对手进行个体特异性投资。在这里,我们研究了一种古老的鸟类谱系——灰雁(Anser Anser)——通过面部可能的个性线索。康拉德·洛伦兹可以根据照片说出“他”群中每只灰雁的名字。为了证实这一观察结果,我们开发了面部识别软件,该软件可以可靠地(约97%的准确率)将鹅脸分配给数据库中的鹅ID,使用在照片准备过程中规范化的喙形态。为了探索个性线索的同构检测,我们建立了鹅的真人大小的照片,并测量了受试者对他们自己(不熟悉的鹅),他们的伴侣和另一个群体的伴侣的照片的反应。大雁对其伴侣的照片表现出更强的依恋反应,这证明大雁可以使用二维图像作为线索来确定社会类别(伴侣/非伴侣)和/或个人层面的识别。我们的方法为自动检测和监测鹅以及测试鸟类认知提供了新的方法。我们的方法也可能为更广泛地使用摄影图像和公民科学参与的物种监测方法创造新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1