Samuel Ponting, Takuma Morimoto, Hannah E Smithson
{"title":"Modeling surface color discrimination under different lighting environments using image chromatic statistics and convolutional neural networks.","authors":"Samuel Ponting, Takuma Morimoto, Hannah E Smithson","doi":"10.1364/josaa.4799861","DOIUrl":null,"url":null,"abstract":"We modeled discrimination thresholds for object colors under different lighting environments [J. Opt. Soc. Am. 35, B244 (2018)]. First, we built models based on chromatic statistics, testing 60 models in total. Second, we trained convolutional neural networks (CNNs), using 160,280 images labeled by either the ground-truth or human responses. No single chromatic statistics model was sufficient to describe human discrimination thresholds across conditions, while human-response-trained CNNs nearly perfectly predicted human thresholds. Guided by region-of-interest analysis of the network, we modified the chromatic statistics models to use only the lower regions of the objects, which substantially improved performance.","PeriodicalId":17413,"journal":{"name":"Journal of the Optical Society of America","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josaa.4799861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We modeled discrimination thresholds for object colors under different lighting environments [J. Opt. Soc. Am. 35, B244 (2018)]. First, we built models based on chromatic statistics, testing 60 models in total. Second, we trained convolutional neural networks (CNNs), using 160,280 images labeled by either the ground-truth or human responses. No single chromatic statistics model was sufficient to describe human discrimination thresholds across conditions, while human-response-trained CNNs nearly perfectly predicted human thresholds. Guided by region-of-interest analysis of the network, we modified the chromatic statistics models to use only the lower regions of the objects, which substantially improved performance.
期刊介绍:
OSA was published by The Optical Society from January 1917 to December 1983 before dividing into JOSA A: Optics and Image Science and JOSA B: Optical Physics in 1984.