Experimental study on dynamic stability of rubber-cement composites by SHPB and high-speed slicing

IF 1.1 Q3 ENGINEERING, CIVIL Archives of Civil Engineering Pub Date : 2023-11-06 DOI:10.24425/ace.2022.140170
Rongzhou Yang, Ying Xu, Pei Yuan Chen
{"title":"Experimental study on dynamic stability of rubber-cement composites by SHPB and high-speed slicing","authors":"Rongzhou Yang, Ying Xu, Pei Yuan Chen","doi":"10.24425/ace.2022.140170","DOIUrl":null,"url":null,"abstract":": Improper disposal of waste tires will not only bring environmental impact and safety risks but also cause a serious waste of resources. In the field of civil engineering materials, waste tire particles are used as a substitute for non-renewable aggregates to produce flexible rubber-cement composites (RCC). To explore the high-speed slicing stability of RCC, this test took normal cement mortar (NCM) and rubber cement mortar (RCM) as research objects. The SHPB tests with the same impact energy level and the high-speed slicing tests with a slice thickness range of about 1.4 mm ∼ 4 . 4 mm were carried out. The results showed that NCM and RCM showed different stability differences in the process of high-speed slicing. In the case of ensuring the integrity of the slice, the minimum thickness of the slice can be better decreased with the increase of the rubber content. Finally, from the perspectives of split Hopkinson pressure bar (SHPB) test results and mesoscopic structure states, the essential reason for ensuring the stability of high-speed slicing lied in the improvement of rubber particles (dominant role) and pores on material deformation and flexible energy dissipation.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ace.2022.140170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

Abstract

: Improper disposal of waste tires will not only bring environmental impact and safety risks but also cause a serious waste of resources. In the field of civil engineering materials, waste tire particles are used as a substitute for non-renewable aggregates to produce flexible rubber-cement composites (RCC). To explore the high-speed slicing stability of RCC, this test took normal cement mortar (NCM) and rubber cement mortar (RCM) as research objects. The SHPB tests with the same impact energy level and the high-speed slicing tests with a slice thickness range of about 1.4 mm ∼ 4 . 4 mm were carried out. The results showed that NCM and RCM showed different stability differences in the process of high-speed slicing. In the case of ensuring the integrity of the slice, the minimum thickness of the slice can be better decreased with the increase of the rubber content. Finally, from the perspectives of split Hopkinson pressure bar (SHPB) test results and mesoscopic structure states, the essential reason for ensuring the stability of high-speed slicing lied in the improvement of rubber particles (dominant role) and pores on material deformation and flexible energy dissipation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
橡胶-水泥复合材料SHPB和高速切片动态稳定性试验研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Civil Engineering
Archives of Civil Engineering ENGINEERING, CIVIL-
CiteScore
1.50
自引率
28.60%
发文量
0
审稿时长
24 weeks
期刊介绍: ARCHIVES OF CIVIL ENGINEERING publish original papers of the theoretical, experimental, numerical and practical nature in the fields of structural mechanics, soil mechanics and foundations engineering, concrete, metal, timber and composite polymer structures, hydrotechnical structures, roads, railways and bridges, building services, building physics, management in construction, production of construction materials, construction of civil engineering structures, education of civil engineers.
期刊最新文献
Determining the trend of geometrical changes of a hydrotechnical object based on data in the form of LiDAR point clouds A study on time schedules for construction projects in Hanoi, Vietnam Study on failure modes and calculation method of the cast steel joint with branches in treelike structure Prediction of CPTu static sounding parameters based on DPH dynamic probing heavy test on the example of “the Praski terrace” sands inWarsaw title Application of the interval approach to determine the exploitation time of pipelines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1