A Method for Enhancing the Acoustic Scattering Characteristics of Underwater Acoustic Corner Reflectors in Vacuum Cavities

IF 1.2 4区 工程技术 Q3 ACOUSTICS Shock and Vibration Pub Date : 2023-11-06 DOI:10.1155/2023/4508247
Jingzhuo Zhang, Dawei Xiao, Taotao Xie
{"title":"A Method for Enhancing the Acoustic Scattering Characteristics of Underwater Acoustic Corner Reflectors in Vacuum Cavities","authors":"Jingzhuo Zhang, Dawei Xiao, Taotao Xie","doi":"10.1155/2023/4508247","DOIUrl":null,"url":null,"abstract":"To alleviate the problem of unsatisfactory target strength and scattering stability of an underwater corner reflector, a method to enhance the acoustic scattering characteristics using a vacuum cavity as an acoustic reflecting layer is proposed. According to the principle of acoustic impedance mismatch of a water-reflecting layer, a vacuum cavity corner reflector is designed to take advantage of the property that sound waves cannot propagate under vacuum conditions. The acoustic vacuum reflecting layer has a theoretical acoustic reflecting coefficient of one. Comparative analyses are carried out with the single-layer metal corner reflector in terms of frequency and angle of incidence. For the concave structure of the underwater corner reflector, the structural finite element software ANSYS combined with the acoustic analysis software SYSNOISE is used to simulate and analyse the acoustic scattering characteristics, and the consistency of the simulation calculations and experimental data is verified through the pool experiments for typical cases. The results show that under the same reflection area, the vacuum cavity underwater corner reflector has large scattering intensity, good antiacoustic performance, no obvious frequency characteristics, and good decoupling effects. The target echo intensity value can be increased by 2 dB for better scattering stability. The overall weight is reduced by about 20 kg, with considerable engineering practicality, proving that the true cavity corner reflector is an ideal underwater acoustic counter-acoustic device.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4508247","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

To alleviate the problem of unsatisfactory target strength and scattering stability of an underwater corner reflector, a method to enhance the acoustic scattering characteristics using a vacuum cavity as an acoustic reflecting layer is proposed. According to the principle of acoustic impedance mismatch of a water-reflecting layer, a vacuum cavity corner reflector is designed to take advantage of the property that sound waves cannot propagate under vacuum conditions. The acoustic vacuum reflecting layer has a theoretical acoustic reflecting coefficient of one. Comparative analyses are carried out with the single-layer metal corner reflector in terms of frequency and angle of incidence. For the concave structure of the underwater corner reflector, the structural finite element software ANSYS combined with the acoustic analysis software SYSNOISE is used to simulate and analyse the acoustic scattering characteristics, and the consistency of the simulation calculations and experimental data is verified through the pool experiments for typical cases. The results show that under the same reflection area, the vacuum cavity underwater corner reflector has large scattering intensity, good antiacoustic performance, no obvious frequency characteristics, and good decoupling effects. The target echo intensity value can be increased by 2 dB for better scattering stability. The overall weight is reduced by about 20 kg, with considerable engineering practicality, proving that the true cavity corner reflector is an ideal underwater acoustic counter-acoustic device.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种增强真空腔中水声角反射器声散射特性的方法
为了解决水下角反射器目标强度和散射稳定性不理想的问题,提出了一种利用真空腔作为声反射层来增强水下角反射器声散射特性的方法。根据水反射层声阻抗失配原理,利用声波在真空条件下不能传播的特性,设计了真空腔角反射器。声真空反射层的理论声反射系数为1。与单层金属角反射器在频率和入射角方面进行了对比分析。针对水下角反射器的凹形结构,采用结构有限元软件ANSYS结合声学分析软件SYSNOISE对其声散射特性进行了模拟分析,并通过典型案例的水池实验验证了模拟计算与实验数据的一致性。结果表明:在相同反射面积下,真空腔水下角反射器散射强度大,抗声性能好,频率特性不明显,去耦效果好;目标回波强度值可提高2 dB,散射稳定性较好。整体重量减轻约20kg,具有相当的工程实用性,证明真腔角反射器是一种理想的水声反声装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Shock and Vibration
Shock and Vibration 物理-工程:机械
CiteScore
3.40
自引率
6.20%
发文量
384
审稿时长
3 months
期刊介绍: Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.
期刊最新文献
Control Effect Analysis and Engineering Application of Anchor Cable Beam-Truss Structure on Large-Deformation Roadway in Deep Coal Mine Study on Ultrasonic Characteristics and Prediction of Rock with Different Pore Sizes Deformation and Failure Evolution Law and Support Optimization of Gob-Side Entry in Weakly Cemented Soft Rock under the Influence of Fault Study on Pretightening Loss Effect of Bolt Support in Deep Soft Rock Roadway Examination of Precast Concrete Movement Subjected to Vibration Employing Mass-Spring Model with Two Convective Masses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1