Don Coppersmith, Michael Mossinghoff, Danny Scheinerman, Jeffrey VanderKam
{"title":"Ideal Solutions in the Prouhet-Tarry-Escott problem","authors":"Don Coppersmith, Michael Mossinghoff, Danny Scheinerman, Jeffrey VanderKam","doi":"10.1090/mcom/3917","DOIUrl":null,"url":null,"abstract":"For given positive integers <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than n\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">m>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the <italic>Prouhet–Tarry–Escott problem</italic> asks if there exist two disjoint multisets of integers of size <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> having identical <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>th moments for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 less-than-or-equal-to k less-than-or-equal-to m\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>k</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>m</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1\\leq k\\leq m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; in the <italic>ideal</italic> case one requires <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m equals n minus 1\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>=</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">m=n-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which is maximal. We describe some searches for ideal solutions to the Prouhet–Tarry–Escott problem, especially solutions possessing a particular symmetry, both over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and over the ring of integers of several imaginary quadratic number fields. Over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we significantly extend searches for symmetric ideal solutions at sizes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"9\"> <mml:semantics> <mml:mn>9</mml:mn> <mml:annotation encoding=\"application/x-tex\">9</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"10\"> <mml:semantics> <mml:mn>10</mml:mn> <mml:annotation encoding=\"application/x-tex\">10</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"11\"> <mml:semantics> <mml:mn>11</mml:mn> <mml:annotation encoding=\"application/x-tex\">11</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"12\"> <mml:semantics> <mml:mn>12</mml:mn> <mml:annotation encoding=\"application/x-tex\">12</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and we conduct extensive searches for the first time at larger sizes up to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"16\"> <mml:semantics> <mml:mn>16</mml:mn> <mml:annotation encoding=\"application/x-tex\">16</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For the quadratic number field case, we find new ideal solutions of sizes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"10\"> <mml:semantics> <mml:mn>10</mml:mn> <mml:annotation encoding=\"application/x-tex\">10</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"12\"> <mml:semantics> <mml:mn>12</mml:mn> <mml:annotation encoding=\"application/x-tex\">12</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the Gaussian integers, of size <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"9\"> <mml:semantics> <mml:mn>9</mml:mn> <mml:annotation encoding=\"application/x-tex\">9</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z left-bracket i StartRoot 2 EndRoot right-bracket\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mi>i</mml:mi> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}[i\\sqrt {2}]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and of sizes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"9\"> <mml:semantics> <mml:mn>9</mml:mn> <mml:annotation encoding=\"application/x-tex\">9</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"12\"> <mml:semantics> <mml:mn>12</mml:mn> <mml:annotation encoding=\"application/x-tex\">12</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the Eisenstein integers.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
For given positive integers mm and nn with m>nm>n, the Prouhet–Tarry–Escott problem asks if there exist two disjoint multisets of integers of size nn having identical kkth moments for 1≤k≤m1\leq k\leq m; in the ideal case one requires m=n−1m=n-1, which is maximal. We describe some searches for ideal solutions to the Prouhet–Tarry–Escott problem, especially solutions possessing a particular symmetry, both over Z\mathbb {Z} and over the ring of integers of several imaginary quadratic number fields. Over Z\mathbb {Z}, we significantly extend searches for symmetric ideal solutions at sizes 99, 1010, 1111, and 1212, and we conduct extensive searches for the first time at larger sizes up to 1616. For the quadratic number field case, we find new ideal solutions of sizes 1010 and 1212 in the Gaussian integers, of size 99 in Z[i2]\mathbb {Z}[i\sqrt {2}], and of sizes 99 and 1212 in the Eisenstein integers.