Soft and hard scales of the transverse momentum distribution in the Color String Percolation Model

Jesús Ricardo Alvarado García, D Rosales Herrera, P Fierro, Jhony Ramírez, A Fernández Téllez, C Pajares
{"title":"Soft and hard scales of the transverse momentum distribution in the Color String Percolation Model","authors":"Jesús Ricardo Alvarado García, D Rosales Herrera, P Fierro, Jhony Ramírez, A Fernández Téllez, C Pajares","doi":"10.1088/1361-6471/acffe1","DOIUrl":null,"url":null,"abstract":"Abstract In color string models, the transverse momentum distribution (TMD) is obtained through the convolution of the Schwinger mechanism with the string tension fluctuations distribution. Considering a q -Gaussian distribution for these fluctuations, the TMD becomes a hypergeometric confluent function that adequately reproduces the characteristic scales at low and high p T values. In this approach, the hard scale of the TMD is a consequence of considering a heavy-tailed distribution for the string tension fluctuations whose width rises as <?CDATA $\\sqrt{s}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msqrt> <mml:mrow> <mml:mi>s</mml:mi> </mml:mrow> </mml:msqrt> </mml:math> , multiplicity or centrality increases. In this paper, we introduce broader information of the TMD in the color string percolation model by determining the color suppression factor, which now also depends on the parameters of the q -Gaussian. To this end, we analyze the reported data on pp and AA collisions at different center of mass energies, multiplicities, and centralities. In particular, for minimum bias pp collisions, we found that the q -Gaussian parameters and the effective temperature are monotonically increasing functions of the center of mass energy. Similar results are found for AA collisions as a function of the centrality at fixed <?CDATA $\\sqrt{s}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msqrt> <mml:mrow> <mml:mi>s</mml:mi> </mml:mrow> </mml:msqrt> </mml:math> . We summarize these results in a phase diagram that indicates the q -Gaussian parameters region allowing the quark–gluon plasma formation.","PeriodicalId":16770,"journal":{"name":"Journal of Physics G","volume":"21 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6471/acffe1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In color string models, the transverse momentum distribution (TMD) is obtained through the convolution of the Schwinger mechanism with the string tension fluctuations distribution. Considering a q -Gaussian distribution for these fluctuations, the TMD becomes a hypergeometric confluent function that adequately reproduces the characteristic scales at low and high p T values. In this approach, the hard scale of the TMD is a consequence of considering a heavy-tailed distribution for the string tension fluctuations whose width rises as s , multiplicity or centrality increases. In this paper, we introduce broader information of the TMD in the color string percolation model by determining the color suppression factor, which now also depends on the parameters of the q -Gaussian. To this end, we analyze the reported data on pp and AA collisions at different center of mass energies, multiplicities, and centralities. In particular, for minimum bias pp collisions, we found that the q -Gaussian parameters and the effective temperature are monotonically increasing functions of the center of mass energy. Similar results are found for AA collisions as a function of the centrality at fixed s . We summarize these results in a phase diagram that indicates the q -Gaussian parameters region allowing the quark–gluon plasma formation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
色弦渗透模型中横向动量分布的软、硬尺度
在彩色弦模型中,通过Schwinger机制与弦张力波动分布的卷积得到横向动量分布。考虑到这些波动的q -高斯分布,TMD成为一个超几何融合函数,可以充分再现低和高p T值的特征尺度。在这种方法中,TMD的硬标度是考虑了弦张力波动的重尾分布的结果,其宽度随着s、多重度或中心性的增加而增加。在本文中,我们通过确定颜色抑制因子来引入颜色串渗透模型中更广泛的TMD信息,该抑制因子现在也依赖于q -高斯的参数。为此,我们分析了不同质心能量、多重度和中心性的pp和AA碰撞的报道数据。特别是对于最小偏置pp碰撞,我们发现q -高斯参数和有效温度是质心能量的单调递增函数。类似的结果也发现了AA碰撞作为固定s的中心性的函数。我们在相位图中总结了这些结果,显示了允许夸克-胶子等离子体形成的q -高斯参数区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Search for the anomalous quartic gauge couplings through Zγ production at e-e+ colliders Energy and system size dependence of strongly intensive fluctuation measures in heavy-ion collisions at FAIR energies Elliptic flow of inclusive charged hadrons in Au+Au collisions at Elab = 35 A GeV using the PHSD model Measurement of neutron induced reaction cross-section of 99Mo Systematic of fusion suppression and its dependency on projectile breakup threshold energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1