Dongkeun Lee, Kyunghyun Baek, Joonsuk Huh, Daniel Kyungdeock Park
{"title":"Variational quantum state discriminator for supervised machine learning","authors":"Dongkeun Lee, Kyunghyun Baek, Joonsuk Huh, Daniel Kyungdeock Park","doi":"10.1088/2058-9565/ad0a05","DOIUrl":null,"url":null,"abstract":"Abstract Quantum state discrimination (QSD) is a fundamental task in quantum information processing with numerous applications. We present a variational quantum algorithm that performs the minimum-error QSD, called the variational quantum state discriminator (VQSD). The VQSD uses a parameterized quantum circuit that is trained by minimizing a cost function derived from the QSD, and finds the optimal positive-operator valued measure (POVM) for distinguishing target quantum states. The VQSD is capable of discriminating even unknown states, eliminating the need for expensive quantum state tomography. Our numerical simulations and comparisons with semidefinite programming demonstrate the effectiveness of the VQSD in finding optimal POVMs for minimum-error QSD of both pure and mixed states. In addition, the VQSD can be utilized as a supervised machine learning algorithm for multi-class classification. The area under the receiver operating characteristic curve obtained in numerical simulations with the Iris flower dataset ranges from 0.97 to 1 with an average of 0.985, demonstrating excellent performance of the VQSD classifier.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"19 4","pages":"0"},"PeriodicalIF":5.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad0a05","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Quantum state discrimination (QSD) is a fundamental task in quantum information processing with numerous applications. We present a variational quantum algorithm that performs the minimum-error QSD, called the variational quantum state discriminator (VQSD). The VQSD uses a parameterized quantum circuit that is trained by minimizing a cost function derived from the QSD, and finds the optimal positive-operator valued measure (POVM) for distinguishing target quantum states. The VQSD is capable of discriminating even unknown states, eliminating the need for expensive quantum state tomography. Our numerical simulations and comparisons with semidefinite programming demonstrate the effectiveness of the VQSD in finding optimal POVMs for minimum-error QSD of both pure and mixed states. In addition, the VQSD can be utilized as a supervised machine learning algorithm for multi-class classification. The area under the receiver operating characteristic curve obtained in numerical simulations with the Iris flower dataset ranges from 0.97 to 1 with an average of 0.985, demonstrating excellent performance of the VQSD classifier.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.