{"title":"Pysanka-Inspired Electrode Modification with Aptamer Encapsulation in ZIF-8 for Urine Creatinine Electrochemical Biosensing","authors":"Antra Ganguly, Anirban Paul, Shalini Prasad","doi":"10.3390/chemosensors11110557","DOIUrl":null,"url":null,"abstract":"Drawing inspiration from the several thousand beautiful Pysanky egg art of Ukraine, we have developed a novel material, Aptamer–Gold Nanoparticles (AuNPs)@ZIF-8, that can be used for building sensitive and highly stable POC biosensors for longitudinal health mapping. Here, we demonstrate a sensitive and specific novel electrochemical biosensor, made of a novel synthesized in situ encapsulated aptamer-AuNPs@ZIF-8 composite, for monitoring levels of creatinine (0.1–1000 μg/mL). In this work, we have reported the synthetic protocol for the first-of-a-kind in situ encapsulation of aptamer and AuNPs together in a ZIF-8 matrix, and explored the characteristic properties of this novel material composite using standard analytical techniques and its application for biosensor application. The as-synthesized material, duly characterized using various physicochemical analytical methods, portrays the characteristics of the unique encapsulation strategy to develop the first-of-a-kind aptamer and AuNP encapsulation. Non-faradaic Electrochemical Impedance Spectroscopy (EIS) and Chronoamperometry were used to characterize the interfacial electrochemical properties. The biosensor performance was first validated using artificial urine in a controlled buffer medium. The stability and robustness were tested using a real human urine medium without filtration or sample treatment. Being versatile, this Ukrainian-art-inspired biosensor can potentially move the needle towards developing the next generation of sample-in-result-out robust POC diagnostics.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":"20 8","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemosensors11110557","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Drawing inspiration from the several thousand beautiful Pysanky egg art of Ukraine, we have developed a novel material, Aptamer–Gold Nanoparticles (AuNPs)@ZIF-8, that can be used for building sensitive and highly stable POC biosensors for longitudinal health mapping. Here, we demonstrate a sensitive and specific novel electrochemical biosensor, made of a novel synthesized in situ encapsulated aptamer-AuNPs@ZIF-8 composite, for monitoring levels of creatinine (0.1–1000 μg/mL). In this work, we have reported the synthetic protocol for the first-of-a-kind in situ encapsulation of aptamer and AuNPs together in a ZIF-8 matrix, and explored the characteristic properties of this novel material composite using standard analytical techniques and its application for biosensor application. The as-synthesized material, duly characterized using various physicochemical analytical methods, portrays the characteristics of the unique encapsulation strategy to develop the first-of-a-kind aptamer and AuNP encapsulation. Non-faradaic Electrochemical Impedance Spectroscopy (EIS) and Chronoamperometry were used to characterize the interfacial electrochemical properties. The biosensor performance was first validated using artificial urine in a controlled buffer medium. The stability and robustness were tested using a real human urine medium without filtration or sample treatment. Being versatile, this Ukrainian-art-inspired biosensor can potentially move the needle towards developing the next generation of sample-in-result-out robust POC diagnostics.
期刊介绍:
Chemosensors (ISSN 2227-9040; CODEN: CHEMO9) is an international, scientific, open access journal on the science and technology of chemical sensors published quarterly online by MDPI.The journal is indexed in Scopus, SCIE (Web of Science), CAPlus / SciFinder, Inspec, Engineering Village and other databases.