Feature selection in intrusion detection systems: a new hybrid fusion of Bat algorithm and Residue Number System

IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Information and Telecommunication Pub Date : 2023-11-06 DOI:10.1080/24751839.2023.2272484
Yakub Kayode Saheed, Temitope Olubanjo Kehinde, Mustafa Ayobami Raji, Usman Ahmad Baba
{"title":"Feature selection in intrusion detection systems: a new hybrid fusion of Bat algorithm and Residue Number System","authors":"Yakub Kayode Saheed, Temitope Olubanjo Kehinde, Mustafa Ayobami Raji, Usman Ahmad Baba","doi":"10.1080/24751839.2023.2272484","DOIUrl":null,"url":null,"abstract":"This research introduces innovative approaches to enhance intrusion detection systems (IDSs) by addressing critical challenges in existing methods. Various machine-learning techniques, including nature-inspired metaheuristics, Bayesian algorithms, and swarm intelligence, have been proposed in the past for attribute selection and IDS performance improvement. However, these methods have often fallen short in terms of detection accuracy, detection rate, precision, and F-score. To tackle these issues, the paper presents a novel hybrid feature selection approach combining the Bat metaheuristic algorithm with the Residue Number System (RNS). Initially, the Bat algorithm is utilized to partition training data and eliminate irrelevant attributes. Recognizing the Bat algorithm's slower training and testing times, RNS is incorporated to enhance processing speed. Additionally, principal component analysis (PCA) is employed for feature extraction. In a second phase, RNS is excluded for feature selection, allowing the Bat algorithm to perform this task while PCA handles feature extraction. Subsequently, classification is conducted using naive bayes, and k-Nearest Neighbors. Experimental results demonstrate the remarkable effectiveness of combining RNS with the Bat algorithm, achieving outstanding detection rates, accuracy, and F-scores. Notably, the fusion approach doubles processing speed. The findings are further validated through benchmarking against existing intrusion detection methods, establishing their competitiveness.","PeriodicalId":32180,"journal":{"name":"Journal of Information and Telecommunication","volume":"15 9","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751839.2023.2272484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This research introduces innovative approaches to enhance intrusion detection systems (IDSs) by addressing critical challenges in existing methods. Various machine-learning techniques, including nature-inspired metaheuristics, Bayesian algorithms, and swarm intelligence, have been proposed in the past for attribute selection and IDS performance improvement. However, these methods have often fallen short in terms of detection accuracy, detection rate, precision, and F-score. To tackle these issues, the paper presents a novel hybrid feature selection approach combining the Bat metaheuristic algorithm with the Residue Number System (RNS). Initially, the Bat algorithm is utilized to partition training data and eliminate irrelevant attributes. Recognizing the Bat algorithm's slower training and testing times, RNS is incorporated to enhance processing speed. Additionally, principal component analysis (PCA) is employed for feature extraction. In a second phase, RNS is excluded for feature selection, allowing the Bat algorithm to perform this task while PCA handles feature extraction. Subsequently, classification is conducted using naive bayes, and k-Nearest Neighbors. Experimental results demonstrate the remarkable effectiveness of combining RNS with the Bat algorithm, achieving outstanding detection rates, accuracy, and F-scores. Notably, the fusion approach doubles processing speed. The findings are further validated through benchmarking against existing intrusion detection methods, establishing their competitiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
入侵检测系统中的特征选择:一种新的Bat算法与剩余数系统的混合融合
本研究通过解决现有方法中的关键挑战,介绍了增强入侵检测系统(ids)的创新方法。过去已经提出了各种机器学习技术,包括自然启发的元启发式、贝叶斯算法和群体智能,用于属性选择和IDS性能改进。然而,这些方法在检测准确率、检出率、精密度和f分数方面往往存在不足。为了解决这些问题,本文提出了一种将Bat元启发式算法与剩余数系统(RNS)相结合的混合特征选择方法。首先利用Bat算法对训练数据进行分割,剔除不相关属性。考虑到Bat算法的训练和测试时间较慢,引入RNS来提高处理速度。此外,采用主成分分析(PCA)进行特征提取。在第二阶段,排除RNS进行特征选择,允许Bat算法执行此任务,而PCA处理特征提取。随后,使用朴素贝叶斯和k近邻进行分类。实验结果表明,RNS与Bat算法相结合的效果显著,检测率、准确率和f分数都很好。值得注意的是,融合方法将处理速度提高了一倍。通过对现有入侵检测方法的基准测试,进一步验证了研究结果,从而确立了它们的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
27 weeks
期刊最新文献
Utilizing deep learning in chipless RFID tag detection: an investigation on high-precision mm-wave spatial tag estimation from 2D virtual imaging On the performance of outage probability in cognitive NOMA random networks with hardware impairments Relay-assisted communication over a fluctuating two-ray fading channel Modified Caesar Cipher and Card Deck Shuffle Rearrangement Algorithm for Image Encryption Application of data envelopment analysis to IT project evaluation, with special emphasis on the choice of inputs and outputs in the context of the organization in question
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1