{"title":"Beyond superoscillation: general theory of approximation with bandlimited functions","authors":"Tathagata Karmakar, Andrew N Jordan","doi":"10.1088/1751-8121/ad09ec","DOIUrl":null,"url":null,"abstract":"Abstract We give a general strategy to construct superoscillating/growing functions using an orthogonal polynomial expansion of a bandlimited function. The degree of superoscillation/growth is controlled by an anomalous expectation value of a pseudodistribution that exceeds the band limit. The function is specified via the rest of its cumulants of the pseudodistribution. We give an explicit construction using Legendre polynomials in the Fourier space, which leads to an expansion in terms of spherical Bessel functions in the real space. The other expansion coefficients may be chosen to optimize other desirable features, such as the range of super behavior. We provide a prescription to generate bandlimited functions that mimic an arbitrary behavior in a finite interval. As target behaviors, we give examples of a superoscillating function, a supergrowing function, and even a discontinuous step function. We also look at the energy content in a superoscillating/supergrowing region and provide a bound that depends on the minimum value of the logarithmic derivative in that interval. Our work offers a new approach to analyzing superoscillations/supergrowth and is relevant to the optical field spot generation endeavors for far-field superresolution imaging.
","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad09ec","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We give a general strategy to construct superoscillating/growing functions using an orthogonal polynomial expansion of a bandlimited function. The degree of superoscillation/growth is controlled by an anomalous expectation value of a pseudodistribution that exceeds the band limit. The function is specified via the rest of its cumulants of the pseudodistribution. We give an explicit construction using Legendre polynomials in the Fourier space, which leads to an expansion in terms of spherical Bessel functions in the real space. The other expansion coefficients may be chosen to optimize other desirable features, such as the range of super behavior. We provide a prescription to generate bandlimited functions that mimic an arbitrary behavior in a finite interval. As target behaviors, we give examples of a superoscillating function, a supergrowing function, and even a discontinuous step function. We also look at the energy content in a superoscillating/supergrowing region and provide a bound that depends on the minimum value of the logarithmic derivative in that interval. Our work offers a new approach to analyzing superoscillations/supergrowth and is relevant to the optical field spot generation endeavors for far-field superresolution imaging.