{"title":"Anomalous thermal structures of subduction zones revealed by thermal properties of clinochlore at high temperature and pressure","authors":"Ruixin Zhang, Duojun Wang, Huiwen Tan, Hongbin Lu, Sheqiang Miao, Xiang Gao, Kenan Han, Peng Chen, Chuanjiang Liu, Nao Cai","doi":"10.1130/b37134.1","DOIUrl":null,"url":null,"abstract":"Clinochlore is a major hydrous mineral in subduction zones, and its thermophysical properties at high temperature and pressure are critical to the thermal structures of subduction zones. Here, we used the pulse heating method to measure thermal diffusivity and thermal conductivity of clinochlore at 0.5−4.0 GPa and 298−1373 K. Our results indicate that upon heating, thermal diffusivity and thermal conductivity decrease from ∼9.6 × 10−7 m2 s−1 to 4.3 × 10−7 m2 s−1 and from ∼3.5 W m−1 K−1 to 1.9 W m−1 K−1, respectively, before dehydration, but this trend is reversed after dehydration. In general, the pressure derivatives for the thermal transport properties also decrease with temperature before dehydration. Lattice heat transfer is the dominant mechanism before dehydration, but fluid is involved after dehydration. Using our experimental data, we simulated the temperature distribution of subducting slabs containing clinochlore at volume fractions of 0%, 10%, 20%, 50%, and 100%. Our simulations showed that the heat insulation effect caused by the presence of clinochlore could result in an increase in temperature by 30−60 K for the upper part of the subducting slab.","PeriodicalId":55104,"journal":{"name":"Geological Society of America Bulletin","volume":"49 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Society of America Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/b37134.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Clinochlore is a major hydrous mineral in subduction zones, and its thermophysical properties at high temperature and pressure are critical to the thermal structures of subduction zones. Here, we used the pulse heating method to measure thermal diffusivity and thermal conductivity of clinochlore at 0.5−4.0 GPa and 298−1373 K. Our results indicate that upon heating, thermal diffusivity and thermal conductivity decrease from ∼9.6 × 10−7 m2 s−1 to 4.3 × 10−7 m2 s−1 and from ∼3.5 W m−1 K−1 to 1.9 W m−1 K−1, respectively, before dehydration, but this trend is reversed after dehydration. In general, the pressure derivatives for the thermal transport properties also decrease with temperature before dehydration. Lattice heat transfer is the dominant mechanism before dehydration, but fluid is involved after dehydration. Using our experimental data, we simulated the temperature distribution of subducting slabs containing clinochlore at volume fractions of 0%, 10%, 20%, 50%, and 100%. Our simulations showed that the heat insulation effect caused by the presence of clinochlore could result in an increase in temperature by 30−60 K for the upper part of the subducting slab.
期刊介绍:
The GSA Bulletin is the Society''s premier scholarly journal, published continuously since 1890. Its first editor was William John (WJ) McGee, who was responsible for establishing much of its original style and format. Fully refereed, each bimonthly issue includes 16-20 papers focusing on the most definitive, timely, and classic-style research in all earth-science disciplines. The Bulletin welcomes most contributions that are data-rich, mature studies of broad interest (i.e., of interest to more than one sub-discipline of earth science) and of lasting, archival quality. These include (but are not limited to) studies related to tectonics, structural geology, geochemistry, geophysics, hydrogeology, marine geology, paleoclimatology, planetary geology, quaternary geology/geomorphology, sedimentary geology, stratigraphy, and volcanology. The journal is committed to further developing both the scope of its content and its international profile so that it publishes the most current earth science research that will be of wide interest to geoscientists.