{"title":"High-performance computing for static security assessment of large power systems","authors":"Venkateswara Rao Kagita, Sanjaya Kumar Panda, Ram Krishan, P. Deepak Reddy, Jabba Aswanth","doi":"10.1080/09540091.2023.2264537","DOIUrl":null,"url":null,"abstract":"Contingency analysis (CA) is one of the essential tools for the optimal design and security assessment of a reliable power system. However, its computational requirements rise with the growth of distributed generations in the interconnected power system. As CA is a complex and computationally intensive problem, it requires a fast and accurate calculation to ensure the secure operation. Therefore, efficient mathematical modelling and parallel programming are key to efficient static security analysis. This paper proposes a parallel algorithm for static CA that uses both central processing units (CPUs) and graphical processing units (GPUs). To enhance the accuracy, AC load flow is used, and parallel computation of load flow is done simultaneously, with efficient screening and ranking of the critical contingencies. We perform extensive experiments to evaluate the efficacy of the proposed algorithm. As a result, we establish that the proposed parallel algorithm with high-performance computing (HPC) computing is much faster than the traditional algorithms. Furthermore, the HPC experiments were conducted using the national supercomputing facility, which demonstrates the proposed algorithm in the context of N−1 and N−2 static CA with immense power systems, such as the Indian northern regional power grid (NRPG) 246-bus and the polish 2383-bus networks.","PeriodicalId":50629,"journal":{"name":"Connection Science","volume":"303 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connection Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09540091.2023.2264537","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Contingency analysis (CA) is one of the essential tools for the optimal design and security assessment of a reliable power system. However, its computational requirements rise with the growth of distributed generations in the interconnected power system. As CA is a complex and computationally intensive problem, it requires a fast and accurate calculation to ensure the secure operation. Therefore, efficient mathematical modelling and parallel programming are key to efficient static security analysis. This paper proposes a parallel algorithm for static CA that uses both central processing units (CPUs) and graphical processing units (GPUs). To enhance the accuracy, AC load flow is used, and parallel computation of load flow is done simultaneously, with efficient screening and ranking of the critical contingencies. We perform extensive experiments to evaluate the efficacy of the proposed algorithm. As a result, we establish that the proposed parallel algorithm with high-performance computing (HPC) computing is much faster than the traditional algorithms. Furthermore, the HPC experiments were conducted using the national supercomputing facility, which demonstrates the proposed algorithm in the context of N−1 and N−2 static CA with immense power systems, such as the Indian northern regional power grid (NRPG) 246-bus and the polish 2383-bus networks.
期刊介绍:
Connection Science is an interdisciplinary journal dedicated to exploring the convergence of the analytic and synthetic sciences, including neuroscience, computational modelling, artificial intelligence, machine learning, deep learning, Database, Big Data, quantum computing, Blockchain, Zero-Knowledge, Internet of Things, Cybersecurity, and parallel and distributed computing.
A strong focus is on the articles arising from connectionist, probabilistic, dynamical, or evolutionary approaches in aspects of Computer Science, applied applications, and systems-level computational subjects that seek to understand models in science and engineering.