Micromechanics and finite element approaches on the influence of fibre irregular surface and debonding on the elastic properties of jute/epoxy composites

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Composite Interfaces Pub Date : 2023-10-04 DOI:10.1080/09276440.2023.2264038
Prasanthi Phani, Raghavendra Gujjala, Shakuntala Ojha, Aswani Kumar Bandaru
{"title":"Micromechanics and finite element approaches on the influence of fibre irregular surface and debonding on the elastic properties of jute/epoxy composites","authors":"Prasanthi Phani, Raghavendra Gujjala, Shakuntala Ojha, Aswani Kumar Bandaru","doi":"10.1080/09276440.2023.2264038","DOIUrl":null,"url":null,"abstract":"This study examines how irregular surfaces and debonding affect jute/epoxy composites. The study used micromechanics and finite element (FE) analysis to investigate properties such as elastic modulus in the longitudinal (E1) and transverse (E2) directions, major (ν12) and minor (ν21) Poisson’s ratios, and interfacial stresses (σ1, σ2, and τ12, τ23, τ13). The FE models were validated using experimental and analytical results, which showed good agreement. Then, the FE model was extended to analyse the influence of different fibre volume fractions (Vf) on jute/epoxy composites with varied irregular surfaces (IRS%) and debonding (DBS%). The interfacial stress was compared across these variables. DBS% caused significant variation in E2 and σ2, while IRS% led to out-of-shear stresses that crossed the threshold. An increase in IRS% and DBS% at a constant fibre volume fraction did not significantly affect E1. However, increasing Vf from 10–70% increased E1 by 168%. E2, on the other hand, decreased with Vf by 63–68%. Both IRS% and DBS% had a significant influence on interfacial stresses.","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":"30 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2264038","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines how irregular surfaces and debonding affect jute/epoxy composites. The study used micromechanics and finite element (FE) analysis to investigate properties such as elastic modulus in the longitudinal (E1) and transverse (E2) directions, major (ν12) and minor (ν21) Poisson’s ratios, and interfacial stresses (σ1, σ2, and τ12, τ23, τ13). The FE models were validated using experimental and analytical results, which showed good agreement. Then, the FE model was extended to analyse the influence of different fibre volume fractions (Vf) on jute/epoxy composites with varied irregular surfaces (IRS%) and debonding (DBS%). The interfacial stress was compared across these variables. DBS% caused significant variation in E2 and σ2, while IRS% led to out-of-shear stresses that crossed the threshold. An increase in IRS% and DBS% at a constant fibre volume fraction did not significantly affect E1. However, increasing Vf from 10–70% increased E1 by 168%. E2, on the other hand, decreased with Vf by 63–68%. Both IRS% and DBS% had a significant influence on interfacial stresses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤维不规则表面和脱粘对黄麻/环氧复合材料弹性性能影响的细观力学和有限元方法
本研究考察了不规则表面和脱粘对黄麻/环氧复合材料的影响。该研究采用微观力学和有限元(FE)分析研究了材料在纵向(E1)和横向(E2)方向上的弹性模量、主泊松比(ν12)和次泊松比(ν21)以及界面应力(σ1, σ2, τ12, τ23, τ13)等特性。通过实验和分析结果对有限元模型进行了验证,结果吻合较好。然后,扩展有限元模型,分析不同纤维体积分数(Vf)对不同不规则表面(IRS%)和脱粘(DBS%)的黄麻/环氧复合材料的影响。通过这些变量比较了界面应力。DBS%导致E2和σ2的显著变化,而IRS%导致出剪应力超过阈值。在一定纤维体积分数下,增加IRS%和DBS%对E1无显著影响。然而,将Vf从10-70%增加,E1增加168%。E2则随Vf降低63-68%。IRS%和DBS%对界面应力均有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composite Interfaces
Composite Interfaces 工程技术-材料科学:复合
CiteScore
5.00
自引率
3.80%
发文量
58
审稿时长
3 months
期刊介绍: Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories. Composite Interfaces covers a wide range of topics including - but not restricted to: -surface treatment of reinforcing fibers and fillers- effect of interface structure on mechanical properties, physical properties, curing and rheology- coupling agents- synthesis of matrices designed to promote adhesion- molecular and atomic characterization of interfaces- interfacial morphology- dynamic mechanical study of interphases- interfacial compatibilization- adsorption- tribology- composites with organic, inorganic and metallic materials- composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields
期刊最新文献
Characterization of composite materials with recycled wind turbine blade additives using atomic force microscopy Does a polymer film due to Rayleigh-instability affect interfacial properties measured by microbond test? Influence of argon plasma treatment on interfacial performance of CFRP at high temperature Hygrothermal effect and statistical analysis of the interfacial performance of nano and microscale polymer composites Current trends and future directions in Si-based MXene composites for enhanced lithium-ion battery applications: a comperehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1