{"title":"Effects of Wind Stress Uncertainty on Short-term Prediction of the Kuroshio Extension State Transition Process","authors":"Hui Zhang, Qiang Wang, Mu Mu, Kun Zhang, Yu Geng","doi":"10.1175/jpo-d-23-0047.1","DOIUrl":null,"url":null,"abstract":"Abstract Based on the Conditional Nonlinear Optimal Perturbation for boundary condition method and Regional Ocean Modeling System (ROMS), this study investigates the influence of wind stress uncertainty on predicting the short-term state transitions of the Kuroshio Extension (KE). The optimal time-dependent wind stress errors that lead to maximum prediction errors are obtained for two KE stable-to-unstable and two reverse transitions, which exhibit local multi-eddies structures with decreasing magnitude as the end time of prediction approaches. The optimal boundary errors initially induce small oceanic errors through Ekman pumping. Subsequently, these errors grow in magnitude as oceanic internal processes take effect, which exerts significant influences on the short-term prediction of the KE state transition process. Specifically, during stable-to-unstable (unstable-to-stable) transitions, the growing error induces an overestimation (underestimation) of the meridional sea surface height gradient across the KE axis, leading to the predicted KE state being more (less) stable. Furthermore, the dynamics mechanism analysis indicates that barotropic instability is crucial for the error growth in the prediction of both the stable-to-unstable and the reverse transition processes due to the horizontal shear of flow field. But work generated by wind stress error plays a more important role in the prediction of the unstable-to-stable transitions because of the synergistic effect of strong wind stress error and strong oceanic error. Eventually, the sensitive areas have been identified based on the optimal boundary errors. Reducing wind stress errors in sensitive areas can significantly improve prediction skills, offering theoretical guidance for devising observational strategies.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":"8 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jpo-d-23-0047.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Based on the Conditional Nonlinear Optimal Perturbation for boundary condition method and Regional Ocean Modeling System (ROMS), this study investigates the influence of wind stress uncertainty on predicting the short-term state transitions of the Kuroshio Extension (KE). The optimal time-dependent wind stress errors that lead to maximum prediction errors are obtained for two KE stable-to-unstable and two reverse transitions, which exhibit local multi-eddies structures with decreasing magnitude as the end time of prediction approaches. The optimal boundary errors initially induce small oceanic errors through Ekman pumping. Subsequently, these errors grow in magnitude as oceanic internal processes take effect, which exerts significant influences on the short-term prediction of the KE state transition process. Specifically, during stable-to-unstable (unstable-to-stable) transitions, the growing error induces an overestimation (underestimation) of the meridional sea surface height gradient across the KE axis, leading to the predicted KE state being more (less) stable. Furthermore, the dynamics mechanism analysis indicates that barotropic instability is crucial for the error growth in the prediction of both the stable-to-unstable and the reverse transition processes due to the horizontal shear of flow field. But work generated by wind stress error plays a more important role in the prediction of the unstable-to-stable transitions because of the synergistic effect of strong wind stress error and strong oceanic error. Eventually, the sensitive areas have been identified based on the optimal boundary errors. Reducing wind stress errors in sensitive areas can significantly improve prediction skills, offering theoretical guidance for devising observational strategies.
期刊介绍:
The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.