Systematic Comparison of Sensor Signals for Pump Operating Points Estimation Using Convolutional Neural Network

IF 1.3 Q2 ENGINEERING, AEROSPACE International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-10-04 DOI:10.3390/ijtpp8040039
Hanbing Ma, Oliver Kirschner, Stefan Riedelbauch
{"title":"Systematic Comparison of Sensor Signals for Pump Operating Points Estimation Using Convolutional Neural Network","authors":"Hanbing Ma, Oliver Kirschner, Stefan Riedelbauch","doi":"10.3390/ijtpp8040039","DOIUrl":null,"url":null,"abstract":"The head and flow rate of a pump characterize the pump performance, which help determine whether maintenance is needed. In the proposed method, instead of a traditional flowmeter and manometer, the operating points are identified using data collected from accelerometers and microphones. The dataset is created from a test rig consisting of a standard centrifugal water pump and measurement system. After implementing preprocessing techniques and Convolutional Neural Networks (CNNs), the trained models are obtained and evaluated. The influence of the sensor location and the performance of different signals or signal combinations are investigated. The proposed method achieves a mean relative error of 7.23% for flow rate and 2.37% for head with the best model. By employing two data augmentation techniques, performance is further improved, resulting in a mean relative error of 3.55% for flow rate and 1.35% for head with the sliding window technique.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbomachinery, Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijtpp8040039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The head and flow rate of a pump characterize the pump performance, which help determine whether maintenance is needed. In the proposed method, instead of a traditional flowmeter and manometer, the operating points are identified using data collected from accelerometers and microphones. The dataset is created from a test rig consisting of a standard centrifugal water pump and measurement system. After implementing preprocessing techniques and Convolutional Neural Networks (CNNs), the trained models are obtained and evaluated. The influence of the sensor location and the performance of different signals or signal combinations are investigated. The proposed method achieves a mean relative error of 7.23% for flow rate and 2.37% for head with the best model. By employing two data augmentation techniques, performance is further improved, resulting in a mean relative error of 3.55% for flow rate and 1.35% for head with the sliding window technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的泵工作点估计传感器信号的系统比较
泵的扬程和流量表征了泵的性能,这有助于确定是否需要维护。在该方法中,使用加速度计和传声器收集的数据来识别工作点,而不是传统的流量计和压力计。该数据集是由一个标准的离心水泵和测量系统组成的试验台创建的。在实现预处理技术和卷积神经网络(cnn)之后,得到训练好的模型并对其进行评估。研究了不同信号或信号组合对传感器位置和性能的影响。在最佳模型下,该方法的流量平均相对误差为7.23%,水头平均相对误差为2.37%。通过采用两种数据增强技术,进一步提高了性能,滑动窗口技术的流量平均相对误差为3.55%,水头平均相对误差为1.35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
21.40%
发文量
29
审稿时长
11 weeks
期刊最新文献
Turbofan Performance Estimation Using Neural Network Component Maps and Genetic Algorithm-Least Squares Solvers Experimental Investigation of an Efficient and Lightweight Designed Counter-Rotating Shrouded Fan Stage Experimental Investigation of the Sensitivity of Forced Response to Cold Streaks in an Axial Turbine Heat Load Development and Heat Map Sensitivity Analysis for Civil Aero-Engines Numerical Investigation of Forced Response in a Transonic Compressor Stage—Highlighting Challenges Using Experimental Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1