Fiber-Optic Nanosensors for Chemical Detection

IF 3.7 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Chemosensors Pub Date : 2023-10-04 DOI:10.3390/chemosensors11100521
Vlastimil Matějec, Ivan Kašík, Ivo Bartoň
{"title":"Fiber-Optic Nanosensors for Chemical Detection","authors":"Vlastimil Matějec, Ivan Kašík, Ivo Bartoň","doi":"10.3390/chemosensors11100521","DOIUrl":null,"url":null,"abstract":"Recently, rapid progress has been achieved in the field of nanomaterial preparation and investigation. Many nanomaterials have been employed in optical chemical sensors and biosensors. This review is focused on fiber-optic nanosensors for chemical sensing based on silica and plastic optical fibers. Four types of fiber-optic chemical nanosensors, namely fiber nanotip sensors, fiber nanoarray sensors, fiber-optic surface plasmon resonance sensors, and fiber-optic nanomaterial-based sensors, are discussed in the paper. The preparation, materials, and sensing characteristics of the selected fiber-optic nanosensors are employed to show the performance of such nanosensors for chemical sensing. Examples of fiber-optic nanobiosensors are also included in the paper to document the broad sensing performance of fiber-optic nanosensors. The employment of fiber-nanotips and nanoarrays for surface-enhanced Raman scattering and nanosensors employing both electrical and optical principles and “Lab-on-fiber” sensors are also included in the paper. The paper deals with fiber-optic nanosensors based on quantum dots, nanotubes, nanorods, and nanosheets of graphene materials, MoS2, and MXenes.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":"3 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemosensors11100521","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, rapid progress has been achieved in the field of nanomaterial preparation and investigation. Many nanomaterials have been employed in optical chemical sensors and biosensors. This review is focused on fiber-optic nanosensors for chemical sensing based on silica and plastic optical fibers. Four types of fiber-optic chemical nanosensors, namely fiber nanotip sensors, fiber nanoarray sensors, fiber-optic surface plasmon resonance sensors, and fiber-optic nanomaterial-based sensors, are discussed in the paper. The preparation, materials, and sensing characteristics of the selected fiber-optic nanosensors are employed to show the performance of such nanosensors for chemical sensing. Examples of fiber-optic nanobiosensors are also included in the paper to document the broad sensing performance of fiber-optic nanosensors. The employment of fiber-nanotips and nanoarrays for surface-enhanced Raman scattering and nanosensors employing both electrical and optical principles and “Lab-on-fiber” sensors are also included in the paper. The paper deals with fiber-optic nanosensors based on quantum dots, nanotubes, nanorods, and nanosheets of graphene materials, MoS2, and MXenes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于化学检测的光纤纳米传感器
近年来,纳米材料的制备和研究取得了迅速的进展。许多纳米材料已被用于光学化学传感器和生物传感器。本文综述了基于二氧化硅和塑料光纤的纳米化学传感光纤传感器的研究进展。本文讨论了光纤化学纳米传感器的四种类型,即光纤纳米尖端传感器、光纤纳米阵列传感器、光纤表面等离子体共振传感器和基于光纤纳米材料的传感器。利用所选光纤纳米传感器的制备、材料和传感特性来展示这种纳米传感器用于化学传感的性能。本文还包括光纤纳米生物传感器的实例,以证明光纤纳米传感器的广泛传感性能。采用光纤纳米尖端和纳米阵列进行表面增强拉曼散射,采用电学和光学原理的纳米传感器和“光纤实验室”传感器也包括在论文中。本文讨论了基于量子点、纳米管、纳米棒和石墨烯材料、MoS2和MXenes的纳米片的光纤纳米传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemosensors
Chemosensors Chemistry-Analytical Chemistry
CiteScore
5.00
自引率
9.50%
发文量
450
审稿时长
11 weeks
期刊介绍: Chemosensors (ISSN 2227-9040; CODEN: CHEMO9) is an international, scientific, open access journal on the science and technology of chemical sensors published quarterly online by MDPI.The journal is indexed in Scopus, SCIE (Web of Science), CAPlus / SciFinder, Inspec, Engineering Village and other databases.
期刊最新文献
Prostate Cancer Detection in Colombian Patients through E-Senses Devices in Exhaled Breath and Urine Samples Origami Paper-Based Electrochemical Immunosensor with Carbon Nanohorns-Decorated Nanoporous Gold for Zearalenone Detection Spectroscopy and Chemometrics for Conformity Analysis of e-Liquids: Illegal Additive Detection and Nicotine Characterization Nanorods Assembled Hierarchical Bi2S3 for Highly Sensitive Detection of Trace NO2 at Room Temperature Evaluation of the Essential Oil Composition of Five Thymus Species Native to Greece
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1