Geometric Deep Learning Strategies for the Characterization of Academic Collaboration Networks

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Emerging Topics in Computing Pub Date : 2023-09-22 DOI:10.1109/TETC.2023.3315954
Daniele Pretolesi;Davide Garbarino;Daniele Giampaoli;Andrea Vian;Annalisa Barla
{"title":"Geometric Deep Learning Strategies for the Characterization of Academic Collaboration Networks","authors":"Daniele Pretolesi;Davide Garbarino;Daniele Giampaoli;Andrea Vian;Annalisa Barla","doi":"10.1109/TETC.2023.3315954","DOIUrl":null,"url":null,"abstract":"This paper examines how geometric deep learning techniques may be employed to analyze academic collaboration networks (ACNs) and how using textual information drawn from publications improves the overall performance of the system. The proposed experimental pipeline was used to analyze the collaboration network of the Machine Learning Genoa Center (MaLGa) research group. First, we find the optimal method for embedding the input data graph and extracting meaningful keywords for the available publications. We then use Graph Neural Networks (GNN) for node type and research topic classification. Finally, we explore how the resulting corpus can be used to create a recommender system for optimal navigation of the ACN. Our results show that the GNN-based recommender system achieved high accuracy in suggesting unexplored nodes to users. Overall, this study demonstrates the potential for using geometric deep learning and Natural Language Processing (NLP) to best represent the scientific production of ACNs. In the future, we plan to incorporate the temporal nature of the data and navigation statistics of users exploring the graph as additional input for the recommender system.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"12 3","pages":"840-851"},"PeriodicalIF":5.1000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10260272/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines how geometric deep learning techniques may be employed to analyze academic collaboration networks (ACNs) and how using textual information drawn from publications improves the overall performance of the system. The proposed experimental pipeline was used to analyze the collaboration network of the Machine Learning Genoa Center (MaLGa) research group. First, we find the optimal method for embedding the input data graph and extracting meaningful keywords for the available publications. We then use Graph Neural Networks (GNN) for node type and research topic classification. Finally, we explore how the resulting corpus can be used to create a recommender system for optimal navigation of the ACN. Our results show that the GNN-based recommender system achieved high accuracy in suggesting unexplored nodes to users. Overall, this study demonstrates the potential for using geometric deep learning and Natural Language Processing (NLP) to best represent the scientific production of ACNs. In the future, we plan to incorporate the temporal nature of the data and navigation statistics of users exploring the graph as additional input for the recommender system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表征学术协作网络的几何深度学习策略
本文探讨了如何利用几何深度学习技术来分析学术协作网络(ACN),以及利用从出版物中提取的文本信息如何提高系统的整体性能。提出的实验管道被用于分析热那亚机器学习中心(MaLGa)研究小组的协作网络。首先,我们找到了嵌入输入数据图并为可用出版物提取有意义关键词的最佳方法。然后,我们使用图神经网络(GNN)进行节点类型和研究主题分类。最后,我们探讨了如何利用由此产生的语料库创建一个推荐系统,以优化 ACN 的导航。我们的研究结果表明,基于 GNN 的推荐系统在向用户推荐未探索节点方面取得了很高的准确率。总之,这项研究展示了使用几何深度学习和自然语言处理(NLP)来最好地表现 ACN 的科学生产的潜力。未来,我们计划将数据的时间性和用户探索图的导航统计作为推荐系统的额外输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Emerging Topics in Computing
IEEE Transactions on Emerging Topics in Computing Computer Science-Computer Science (miscellaneous)
CiteScore
12.10
自引率
5.10%
发文量
113
期刊介绍: IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Emerging Topics in Computing Information for Authors Special Section on Emerging Social Computing DALTON - Deep Local Learning in SNNs via local Weights and Surrogate-Derivative Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1