Fitting an Equation to Data Impartially

Chris Tofallis
{"title":"Fitting an Equation to Data Impartially","authors":"Chris Tofallis","doi":"10.2139/ssrn.4556739","DOIUrl":null,"url":null,"abstract":"We consider the problem of fitting a relationship (e.g., a potential scientific law) to data involving multiple variables. Ordinary (least squares) regression is not suitable for this because the estimated relationship will differ according to which variable is chosen as being dependent, and the dependent variable is unrealistically assumed to be the only variable which has any measurement error (noise). We present a very general method for estimating a linear functional relationship between multiple noisy variables, which are treated impartially, i.e., no distinction between dependent and independent variables. The data are not assumed to follow any distribution, but all variables are treated as being equally reliable. Our approach extends the geometric mean functional relationship to multiple dimensions. This is especially useful with variables measured in different units, as it is naturally scale invariant, whereas orthogonal regression is not. This is because our approach is not based on minimizing distances, but on the symmetric concept of correlation. The estimated coefficients are easily obtained from the covariances or correlations, and correspond to geometric means of associated least squares coefficients. The ease of calculation will hopefully allow widespread application of impartial fitting to estimate relationships in a neutral way.","PeriodicalId":21927,"journal":{"name":"Social Science Research Network","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Research Network","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4556739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of fitting a relationship (e.g., a potential scientific law) to data involving multiple variables. Ordinary (least squares) regression is not suitable for this because the estimated relationship will differ according to which variable is chosen as being dependent, and the dependent variable is unrealistically assumed to be the only variable which has any measurement error (noise). We present a very general method for estimating a linear functional relationship between multiple noisy variables, which are treated impartially, i.e., no distinction between dependent and independent variables. The data are not assumed to follow any distribution, but all variables are treated as being equally reliable. Our approach extends the geometric mean functional relationship to multiple dimensions. This is especially useful with variables measured in different units, as it is naturally scale invariant, whereas orthogonal regression is not. This is because our approach is not based on minimizing distances, but on the symmetric concept of correlation. The estimated coefficients are easily obtained from the covariances or correlations, and correspond to geometric means of associated least squares coefficients. The ease of calculation will hopefully allow widespread application of impartial fitting to estimate relationships in a neutral way.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
公正地拟合数据方程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explainable Machine Learning Models of Consumer Credit Risk Contribution of ChatGPT and Other Generative Artificial Intelligence (AI) in Renewable and Sustainable Energy The Metaverse Hype: Identifying Bubbles and Comovements of Metaverse Tokens Supremația tehnologiilor IT&C (The supremacy of IT&C technologies) Customers’ Multihoming Behavior in Ride-Hailing: Empirical Evidence from Uber and Lyft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1