J. M. Cunill-Flores, I. Salgado Escobar, D Guerra Ramírez, N. Jiménez-Juárez, A. Nettel-Hernanz, G. M. Horta-Valerdi, W. A. Matamoros, Y. Pacheco Hernández
{"title":"Genomic DNA extraction and phenolic content of salty and tannic plant material of two mangrove tree species from the mexican pacific coast","authors":"J. M. Cunill-Flores, I. Salgado Escobar, D Guerra Ramírez, N. Jiménez-Juárez, A. Nettel-Hernanz, G. M. Horta-Valerdi, W. A. Matamoros, Y. Pacheco Hernández","doi":"10.2478/sg-2023-0015","DOIUrl":null,"url":null,"abstract":"Abstract Mangroves, unique tree and shrub species inhabiting coastal saline environments, exhibit distinctive ecological and morpho-physiological traits, including forming pure intertidal stands and possessing specialized mechanisms for salt excretion and aerial root respiration. These species produce valuable antioxidants, such as phenols and tannins, with significant pharmacological, ecological, and toxicological implications. This study aimed to develop a highly efficient DNA extraction protocol for mangrove leaves rich in salt and tannins. The commonly used CTAB extraction protocol and a commercial DNA extraction kit were modified to enhance DNA purity and yield. The antioxidant capacity of the samples was assessed using various protocols. The results demonstrated that the modified commercial kit outperformed other methods in extracting DNA from mangrove leaves, effectively overcoming challenges associated with high salt and phenolic compounds that could impede next-generation sequencing (NGS) analysis. Furthermore, the findings revealed an inverse relationship between tannin concentration and DNA extraction yield. This study offers a valuable resource for DNA extraction protocols from tannin-rich plant materials. In conclusion, the modified commercial kit represents the most efficient and effective approach for extracting DNA from tannin-rich mangrove leaves.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silvae Genetica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sg-2023-0015","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Mangroves, unique tree and shrub species inhabiting coastal saline environments, exhibit distinctive ecological and morpho-physiological traits, including forming pure intertidal stands and possessing specialized mechanisms for salt excretion and aerial root respiration. These species produce valuable antioxidants, such as phenols and tannins, with significant pharmacological, ecological, and toxicological implications. This study aimed to develop a highly efficient DNA extraction protocol for mangrove leaves rich in salt and tannins. The commonly used CTAB extraction protocol and a commercial DNA extraction kit were modified to enhance DNA purity and yield. The antioxidant capacity of the samples was assessed using various protocols. The results demonstrated that the modified commercial kit outperformed other methods in extracting DNA from mangrove leaves, effectively overcoming challenges associated with high salt and phenolic compounds that could impede next-generation sequencing (NGS) analysis. Furthermore, the findings revealed an inverse relationship between tannin concentration and DNA extraction yield. This study offers a valuable resource for DNA extraction protocols from tannin-rich plant materials. In conclusion, the modified commercial kit represents the most efficient and effective approach for extracting DNA from tannin-rich mangrove leaves.
期刊介绍:
Silvae Genetica is an international peer reviewed journal with more than 65 year tradition and experience in all fields of theoretical and applied Forest Genetics and Tree breeding. It continues "Zeitschrift für Forstgenetik und Forstpflanzenzüchtung" (Journal of Forest Genetics and Forest Tree Breeding) founded by W. LANGNER in 1951.