A new method to determine composition of sphalerite without secondary pollution based on CIELAB color space

IF 18.7 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY SusMat Pub Date : 2023-10-01 DOI:10.1002/sus2.161
Yong Liu, Ning Duan, Linhua Jiang, Hongping He, Han Cheng, Jiaqi Liao, Yanli Xu, Wen Cheng, Ying Chen, Guangbin Zhu, Fuyuan Xu
{"title":"A new method to determine composition of sphalerite without secondary pollution based on CIELAB color space","authors":"Yong Liu, Ning Duan, Linhua Jiang, Hongping He, Han Cheng, Jiaqi Liao, Yanli Xu, Wen Cheng, Ying Chen, Guangbin Zhu, Fuyuan Xu","doi":"10.1002/sus2.161","DOIUrl":null,"url":null,"abstract":"Abstract Currently, most of the methods for mineral materials analysis generate secondary pollution, which is detrimental to human health. For instance, traditional methods for sphalerite analysis in the zinc (Zn) smelting industry including chemical titration, atomic absorption spectrometry, and inductively coupled atomic emission spectroscopy. Colored indicators and toxic heavy metals are used in the analytical processes, causing severe pollution. For some methods, liquid is transformed into gaseous plasma, which is more dangerous to human health. Due to large quantities of sphalerite being used, secondary pollution cannot be ignored. This study proposes a green analysis method for the detection of sphalerite based on colorimetry, which does not generate secondary pollution. The results show that the strong substitution ability of iron (Fe) for Zn contributes to their inverse correlation in contents. The lattice parameters decrease with the increasing Fe content, resulting in a darker coloration. Here, key colorimetry parameters of L*, a*, and b* show clear linear correlations with the Zn and Fe contents. Compared with traditional approaches, this new method is environmental friendly with high sensitivity and accuracy. The relative error and relative standard deviation were less than 10% and 5%, respectively. This study provides a significant reference for nonpollution determination of other mineral materials.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":"67 1","pages":"0"},"PeriodicalIF":18.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.161","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Currently, most of the methods for mineral materials analysis generate secondary pollution, which is detrimental to human health. For instance, traditional methods for sphalerite analysis in the zinc (Zn) smelting industry including chemical titration, atomic absorption spectrometry, and inductively coupled atomic emission spectroscopy. Colored indicators and toxic heavy metals are used in the analytical processes, causing severe pollution. For some methods, liquid is transformed into gaseous plasma, which is more dangerous to human health. Due to large quantities of sphalerite being used, secondary pollution cannot be ignored. This study proposes a green analysis method for the detection of sphalerite based on colorimetry, which does not generate secondary pollution. The results show that the strong substitution ability of iron (Fe) for Zn contributes to their inverse correlation in contents. The lattice parameters decrease with the increasing Fe content, resulting in a darker coloration. Here, key colorimetry parameters of L*, a*, and b* show clear linear correlations with the Zn and Fe contents. Compared with traditional approaches, this new method is environmental friendly with high sensitivity and accuracy. The relative error and relative standard deviation were less than 10% and 5%, respectively. This study provides a significant reference for nonpollution determination of other mineral materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CIELAB色彩空间的无二次污染闪锌矿成分测定新方法
目前,大多数矿物材料分析方法都会产生二次污染,不利于人体健康。例如,锌冶炼行业中闪锌矿分析的传统方法包括化学滴定法、原子吸收光谱法和电感耦合原子发射光谱法。分析过程中使用有色指示剂和有毒重金属,造成严重污染。有些方法将液体转化为气态等离子体,对人体健康危害更大。由于闪锌矿的大量使用,二次污染不容忽视。本研究提出了一种基于比色法的闪锌矿检测绿色分析方法,该方法不会产生二次污染。结果表明,铁(Fe)对Zn具有较强的取代能力,导致两者含量呈负相关。随着铁含量的增加,晶格参数降低,导致颜色变深。在这里,L*、a*和b*的关键比色参数与Zn和Fe含量呈明显的线性相关。与传统方法相比,该方法对环境友好,具有较高的灵敏度和准确性。相对误差小于10%,相对标准偏差小于5%。本研究为其他矿物材料的无公害测定提供了重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
4.20%
发文量
0
期刊介绍: SusMat aims to publish interdisciplinary and balanced research on sustainable development in various areas including materials science, engineering, chemistry, physics, and ecology. The journal focuses on sustainable materials and their impact on energy and the environment. The topics covered include environment-friendly materials, green catalysis, clean energy, and waste treatment and management. The readership includes materials scientists, engineers, chemists, physicists, energy and environment researchers, and policy makers. The journal is indexed in CAS, Current Contents, DOAJ, Science Citation Index Expanded, and Web of Science. The journal highly values innovative multidisciplinary research with wide impact.
期刊最新文献
Low dielectric constant and highly intrinsic thermal conductivity fluorine‐containing epoxy resins with ordered liquid crystal structures The design and synthesis of Prussian blue analogs as a sustainable cathode for sodium‐ion batteries Modulating CsPbl3 crystallization by using diammonium agent for efficient solar cells Toward effective electrocatalytic C–N coupling for the synthesis of organic nitrogenous compounds using CO2 and biomass as carbon sources Dimensional engineering of covalent organic frameworks derived carbons for electrocatalytic carbon dioxide reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1