DETECTION OF LUNG DISEASES FROM COLORIZED CHEST X-RAY IMAGES USING DEEP LEARNING

IF 0.5 4区 农林科学 Q4 FORESTRY Sylwan Pub Date : 2023-01-01 DOI:10.59879/ffow3
Sibel Senan, Razan Almnawer
{"title":"DETECTION OF LUNG DISEASES FROM COLORIZED CHEST X-RAY IMAGES USING DEEP LEARNING","authors":"Sibel Senan, Razan Almnawer","doi":"10.59879/ffow3","DOIUrl":null,"url":null,"abstract":"In recent years, there have been significant advancements in the utilization of machine learning, incorporating data mining and deep learning techniques, for the analysis of chest X-ray images. These methods play a vital role as decision support tools, aiding radiologists in expediting the diagnostic process. Chest X-ray (CXR) images have proven their value in diagnosing and monitoring various pulmonary diseases, such as COVID-19 and Pneumonia and Tuberculosis. This study aims to detect these lung diseases by applying deep learning method. To achieve this, we applied Convolutional Neural Network (CNN) and Transfer (VGG16) models in the publicly available dataset comprising 7135 CXR images. The obtained results show the effectiveness of deep learning in detecting lung diseases, as well as the importance of coloring CXR images to increase the accuracy of disease detection.","PeriodicalId":49454,"journal":{"name":"Sylwan","volume":"44 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sylwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59879/ffow3","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, there have been significant advancements in the utilization of machine learning, incorporating data mining and deep learning techniques, for the analysis of chest X-ray images. These methods play a vital role as decision support tools, aiding radiologists in expediting the diagnostic process. Chest X-ray (CXR) images have proven their value in diagnosing and monitoring various pulmonary diseases, such as COVID-19 and Pneumonia and Tuberculosis. This study aims to detect these lung diseases by applying deep learning method. To achieve this, we applied Convolutional Neural Network (CNN) and Transfer (VGG16) models in the publicly available dataset comprising 7135 CXR images. The obtained results show the effectiveness of deep learning in detecting lung diseases, as well as the importance of coloring CXR images to increase the accuracy of disease detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习从彩色胸部x射线图像中检测肺部疾病
近年来,结合数据挖掘和深度学习技术的机器学习应用在胸部x射线图像分析方面取得了重大进展。这些方法作为决策支持工具发挥着至关重要的作用,帮助放射科医生加快诊断过程。胸部x射线(CXR)图像已证明其在诊断和监测各种肺部疾病(如COVID-19和肺炎和结核病)方面的价值。本研究旨在应用深度学习方法检测这些肺部疾病。为了实现这一点,我们在包含7135张CXR图像的公开数据集中应用了卷积神经网络(CNN)和传输(VGG16)模型。所获得的结果表明了深度学习在肺部疾病检测中的有效性,以及对CXR图像着色对于提高疾病检测准确性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sylwan
Sylwan 农林科学-林学
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
1 months
期刊介绍: SYLWAN jest najstarszym w Polsce leśnym czasopismem naukowym, jednym z pierwszych na świecie. Został założony w 1820 roku w Warszawie. Przyczynił się w znakomity sposób do rozwoju polskiego leśnictwa, służąc postępowi, upowszechnieniu wiedzy leśnej oraz rozwojowi nauki.
期刊最新文献
Spectrophotometric Methods for Determination of Clopidogrel in Bulk and in Pharmaceutical Formulations Lejeunea Cancellata as a modulating agent in breast cancer (MCF-7) tumor cell lines and human colostrum THE PERCEPTION AND CONSUMER BEHAVIOR OF ORGANIC PRODUCTS IN SUPPORTING A SUSTAINABLE ENVIRONMENT Die literarischen Selbstbeschreibungen der Postmoderne LIVELIHOOD DIVERSIFICATION OF RICE FARMER HOUSEHOLDS IN INDRAMAYU DISTRICT, WEST JAVA, INDONESIA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1