Intelligent Print Circuit Board Defect Detection

IF 0.5 4区 农林科学 Q4 FORESTRY Sylwan Pub Date : 2023-01-01 DOI:10.59879/gbzfq
Huang-Chu Huang, Chih-Yung Chen, I-Chun Chen, Rey-Chue Hwang
{"title":"Intelligent Print Circuit Board Defect Detection","authors":"Huang-Chu Huang, Chih-Yung Chen, I-Chun Chen, Rey-Chue Hwang","doi":"10.59879/gbzfq","DOIUrl":null,"url":null,"abstract":"During the manufacturing process of electronic products, one of the most critical stages is the soldering of components onto the printed circuit board (PCB). Even a minor defect in the PCB can lead to significant issues in the final product. Therefore, a rigorous\\ndefect inspection process is employed during manufacturing, which can be categorized into manual inspection and automated optical inspection (AOI). Manual inspection suffers from drawbacks such as slow speed and the expenditure of manpower and costs. Hence, most manufacturers opt for automated optical inspection to expedite production. However, most current automated optical inspection systems rely on traditional optical inspection algorithms. These computational methods are susceptible to variations in lighting conditions caused by slight differences in the placement of PCBs or the amount of solder. Consequently, these variations often result in misjudgments, where qualified PCBs are mistakenly categorized as defective, leading to high false positive rates in AOI systems.\\nThis paper presents a deep learning based method for PCB defect detection. The proposed approach involves the creation of two separate models for classifying defective components individually. Once both models demonstrate a basic recognition capability, they are combined into a master model using the method proposed in this study to enhance overall recognition accuracy. The model has\\nbeen trained on datasets for capacitors and resistors, and the experimental results indicate an accuracy of over 99% for both component types.","PeriodicalId":49454,"journal":{"name":"Sylwan","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sylwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59879/gbzfq","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

During the manufacturing process of electronic products, one of the most critical stages is the soldering of components onto the printed circuit board (PCB). Even a minor defect in the PCB can lead to significant issues in the final product. Therefore, a rigorous\ndefect inspection process is employed during manufacturing, which can be categorized into manual inspection and automated optical inspection (AOI). Manual inspection suffers from drawbacks such as slow speed and the expenditure of manpower and costs. Hence, most manufacturers opt for automated optical inspection to expedite production. However, most current automated optical inspection systems rely on traditional optical inspection algorithms. These computational methods are susceptible to variations in lighting conditions caused by slight differences in the placement of PCBs or the amount of solder. Consequently, these variations often result in misjudgments, where qualified PCBs are mistakenly categorized as defective, leading to high false positive rates in AOI systems.\nThis paper presents a deep learning based method for PCB defect detection. The proposed approach involves the creation of two separate models for classifying defective components individually. Once both models demonstrate a basic recognition capability, they are combined into a master model using the method proposed in this study to enhance overall recognition accuracy. The model has\nbeen trained on datasets for capacitors and resistors, and the experimental results indicate an accuracy of over 99% for both component types.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能印刷电路板缺陷检测
在电子产品的制造过程中,最关键的阶段之一是将元件焊接到印刷电路板上。即使PCB中的一个小缺陷也可能导致最终产品的重大问题。因此,在制造过程中采用了严格的缺陷检测过程,可分为人工检测和自动光学检测(AOI)。人工检测存在速度慢、耗费人力和成本等缺点。因此,大多数制造商选择自动光学检测来加快生产。然而,目前大多数自动光学检测系统依赖于传统的光学检测算法。这些计算方法易受pcb放置或焊料量的细微差异所引起的照明条件变化的影响。因此,这些变化经常导致误判,其中合格的pcb被错误地归类为缺陷,导致AOI系统中的高假阳性率。提出了一种基于深度学习的PCB缺陷检测方法。提出的方法包括创建两个单独的模型,分别对有缺陷的部件进行分类。一旦两个模型都具备了基本的识别能力,就可以使用本文提出的方法将它们组合成一个主模型,以提高整体的识别精度。该模型已在电容器和电阻器数据集上进行了训练,实验结果表明,该模型对两种元件类型的准确率均超过99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sylwan
Sylwan 农林科学-林学
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
1 months
期刊介绍: SYLWAN jest najstarszym w Polsce leśnym czasopismem naukowym, jednym z pierwszych na świecie. Został założony w 1820 roku w Warszawie. Przyczynił się w znakomity sposób do rozwoju polskiego leśnictwa, służąc postępowi, upowszechnieniu wiedzy leśnej oraz rozwojowi nauki.
期刊最新文献
Spectrophotometric Methods for Determination of Clopidogrel in Bulk and in Pharmaceutical Formulations Lejeunea Cancellata as a modulating agent in breast cancer (MCF-7) tumor cell lines and human colostrum THE PERCEPTION AND CONSUMER BEHAVIOR OF ORGANIC PRODUCTS IN SUPPORTING A SUSTAINABLE ENVIRONMENT Die literarischen Selbstbeschreibungen der Postmoderne LIVELIHOOD DIVERSIFICATION OF RICE FARMER HOUSEHOLDS IN INDRAMAYU DISTRICT, WEST JAVA, INDONESIA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1