A Conceptual Design of an AI-Enabled Decision Support System for Analysing Donor Behaviour in Nonprofit Organisations

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Information (Switzerland) Pub Date : 2023-10-20 DOI:10.3390/info14100578
Idrees Alsolbi, Renu Agarwal, Bhuvan Unhelkar, Tareq Al-Jabri, Mahendra Samarawickrama, Siamak Tafavogh, Mukesh Prasad
{"title":"A Conceptual Design of an AI-Enabled Decision Support System for Analysing Donor Behaviour in Nonprofit Organisations","authors":"Idrees Alsolbi, Renu Agarwal, Bhuvan Unhelkar, Tareq Al-Jabri, Mahendra Samarawickrama, Siamak Tafavogh, Mukesh Prasad","doi":"10.3390/info14100578","DOIUrl":null,"url":null,"abstract":"Analysing and understanding donor behaviour in nonprofit organisations (NPOs) is challenging due to the lack of human and technical resources. Machine learning (ML) techniques can analyse and understand donor behaviour at a certain level; however, it remains to be seen how to build and design an artificial-intelligence-enabled decision-support system (AI-enabled DSS) to analyse donor behaviour. Thus, this paper proposes an AI-enabled DSS conceptual design to analyse donor behaviour in NPOs. A conceptual design is created following a design science research approach to evaluate an AI-enabled DSS’s initial DPs and features to analyse donor behaviour in NPOs. The evaluation process of the conceptual design applied formative assessment by conducting interviews with stakeholders from NPOs. The interviews were conducted using the Appreciative Inquiry framework to facilitate the process of interviews. The evaluation of the conceptual design results led to the recommendation for efficiency, effectiveness, flexibility, and usability in the requirements of the AI-enabled DSS. This research contributes to the design knowledge base of AI-enabled DSSs for analysing donor behaviour in NPOs. Future research will combine theoretical components to introduce a practical AI-enabled DSS for analysing donor behaviour in NPOs. This research is limited to such an analysis of donors who donate money or volunteer time for NPOs.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14100578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Analysing and understanding donor behaviour in nonprofit organisations (NPOs) is challenging due to the lack of human and technical resources. Machine learning (ML) techniques can analyse and understand donor behaviour at a certain level; however, it remains to be seen how to build and design an artificial-intelligence-enabled decision-support system (AI-enabled DSS) to analyse donor behaviour. Thus, this paper proposes an AI-enabled DSS conceptual design to analyse donor behaviour in NPOs. A conceptual design is created following a design science research approach to evaluate an AI-enabled DSS’s initial DPs and features to analyse donor behaviour in NPOs. The evaluation process of the conceptual design applied formative assessment by conducting interviews with stakeholders from NPOs. The interviews were conducted using the Appreciative Inquiry framework to facilitate the process of interviews. The evaluation of the conceptual design results led to the recommendation for efficiency, effectiveness, flexibility, and usability in the requirements of the AI-enabled DSS. This research contributes to the design knowledge base of AI-enabled DSSs for analysing donor behaviour in NPOs. Future research will combine theoretical components to introduce a practical AI-enabled DSS for analysing donor behaviour in NPOs. This research is limited to such an analysis of donors who donate money or volunteer time for NPOs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于分析非营利组织捐赠行为的人工智能决策支持系统的概念设计
由于缺乏人力和技术资源,分析和理解非营利组织(NPOs)的捐赠行为具有挑战性。机器学习(ML)技术可以在一定程度上分析和理解捐赠者的行为;然而,如何建立和设计一个支持人工智能的决策支持系统(AI-enabled DSS)来分析捐助者的行为还有待观察。因此,本文提出了一个支持人工智能的决策支持系统概念设计,以分析非营利组织中的捐助者行为。根据设计科学研究方法创建概念设计,以评估启用ai的DSS的初始DPs和功能,以分析非营利组织中的捐助者行为。概念设计的评估过程通过与非营利组织的利益相关者进行访谈,采用形成性评估。访谈是使用赞赏式调查框架进行的,以促进访谈过程。对概念设计结果的评估导致了对人工智能支持的决策支持系统要求的效率、有效性、灵活性和可用性的建议。这项研究有助于为分析非营利组织中捐助者行为的人工智能支持的决策支持系统的设计知识库。未来的研究将结合理论组成部分,引入一个实用的人工智能支持的决策支持系统,用于分析非营利组织的捐助者行为。本研究仅限于对为非营利组织捐款或提供志愿服务的捐赠者进行这样的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information (Switzerland)
Information (Switzerland) Computer Science-Information Systems
CiteScore
6.90
自引率
0.00%
发文量
515
审稿时长
11 weeks
期刊最新文献
Weakly Supervised Learning Approach for Implicit Aspect Extraction Science Mapping of Meta-Analysis in Agricultural Science An Integrated Time Series Prediction Model Based on Empirical Mode Decomposition and Two Attention Mechanisms Context-Aware Personalization: A Systems Engineering Framework Polarizing Topics on Twitter in the 2022 United States Elections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1