A low power varactor based digitally controlled oscillator design in 180 nm CMOS technology

IF 2.8 Q2 MULTIDISCIPLINARY SCIENCES SN Applied Sciences Pub Date : 2023-10-20 DOI:10.1007/s42452-023-05519-0
Shweta Dabas, Manoj Kumar
{"title":"A low power varactor based digitally controlled oscillator design in 180 nm CMOS technology","authors":"Shweta Dabas, Manoj Kumar","doi":"10.1007/s42452-023-05519-0","DOIUrl":null,"url":null,"abstract":"Abstract This paper reports two distinct architectures for digitally-controlled oscillators (DCOs) utilizing MOS varactor, designed in TSMC 180 nm CMOS technology. The first DCO design employs a CMOS inverter, while the second design features a Three-Transistors (3T) NAND gate as a delay stage inverter. Using these delay stages, three-bit, five-bit, and seven-bit controlled DCO circuits have been designed. For the inverter-based DCO circuit, the frequency spans from 4.844 to 2.708 GHz, 2.523 to 0.853 GHz, and 1.364 to 0.253 GHz, with a power consumption of 0.958 mW, 1.597 mW, and 2.236 mW for three-bit, five-bit, and seven-bit DCO variants, respectively. Further, the 3T-NAND gate-based DCO circuit exhibits oscillation frequencies ranging from 2.024 to 0.517 GHz, 0.867 to 0.131 GHz, and 0.341 to 0.033 GHz, with the resulting power consumption of 0.335 mW, 0.559 mW, and 0.782 mW. Equally significant, the proposed inverter-based DCO attains phase noise of − 102.61 dBc/Hz@1MHz, − 99.65 dBc/Hz@1MHz, and − 117.54 dBc/Hz@1MHz, accompanied by corresponding figures of merit (FoM) 174.94 dBc/Hz, 161.27 dBc/Hz, and 165.10 dBc/Hz for three-bit, five-bit, and seven-bit control words, respectively. For the 3T-NAND gate-based DCO, phase noise levels register at − 93.51 dBc/Hz@1MHz, − 113.07 dBc/Hz@1MHz, and − 106.96 dBc/Hz@1MHz, with FoM values of 160.23 dBc/Hz, 166.70 dBc/Hz, and 150.30 dBc/Hz for three-bit, five-bit, and seven-bit DCO variants, respectively. The comprehensive analysis of the proposed DCOs demonstrates the power supply variations, phase noise deviations, and frequency variations. The reported DCOs perform better with regard to output frequency range, power consumption, and overall FoM.","PeriodicalId":21821,"journal":{"name":"SN Applied Sciences","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SN Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42452-023-05519-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper reports two distinct architectures for digitally-controlled oscillators (DCOs) utilizing MOS varactor, designed in TSMC 180 nm CMOS technology. The first DCO design employs a CMOS inverter, while the second design features a Three-Transistors (3T) NAND gate as a delay stage inverter. Using these delay stages, three-bit, five-bit, and seven-bit controlled DCO circuits have been designed. For the inverter-based DCO circuit, the frequency spans from 4.844 to 2.708 GHz, 2.523 to 0.853 GHz, and 1.364 to 0.253 GHz, with a power consumption of 0.958 mW, 1.597 mW, and 2.236 mW for three-bit, five-bit, and seven-bit DCO variants, respectively. Further, the 3T-NAND gate-based DCO circuit exhibits oscillation frequencies ranging from 2.024 to 0.517 GHz, 0.867 to 0.131 GHz, and 0.341 to 0.033 GHz, with the resulting power consumption of 0.335 mW, 0.559 mW, and 0.782 mW. Equally significant, the proposed inverter-based DCO attains phase noise of − 102.61 dBc/Hz@1MHz, − 99.65 dBc/Hz@1MHz, and − 117.54 dBc/Hz@1MHz, accompanied by corresponding figures of merit (FoM) 174.94 dBc/Hz, 161.27 dBc/Hz, and 165.10 dBc/Hz for three-bit, five-bit, and seven-bit control words, respectively. For the 3T-NAND gate-based DCO, phase noise levels register at − 93.51 dBc/Hz@1MHz, − 113.07 dBc/Hz@1MHz, and − 106.96 dBc/Hz@1MHz, with FoM values of 160.23 dBc/Hz, 166.70 dBc/Hz, and 150.30 dBc/Hz for three-bit, five-bit, and seven-bit DCO variants, respectively. The comprehensive analysis of the proposed DCOs demonstrates the power supply variations, phase noise deviations, and frequency variations. The reported DCOs perform better with regard to output frequency range, power consumption, and overall FoM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于180nm CMOS技术的低功耗变容数字控制振荡器设计
摘要:本文报道了两种不同的基于TSMC 180 nm CMOS技术的MOS变容管数字控制振荡器(DCOs)架构。第一种DCO设计采用CMOS逆变器,而第二种设计采用三晶体管(3T) NAND门作为延迟级逆变器。利用这些延迟级,设计了3位、5位和7位控制的DCO电路。对于基于逆变器的DCO电路,频率范围为4.844 ~ 2.708 GHz、2.523 ~ 0.853 GHz和1.364 ~ 0.253 GHz, 3位、5位和7位DCO型号的功耗分别为0.958 mW、1.597 mW和2.236 mW。此外,基于3T-NAND门的DCO电路的振荡频率范围为2.024至0.517 GHz、0.867至0.131 GHz和0.341至0.033 GHz,功耗分别为0.335 mW、0.559 mW和0.782 mW。同样重要的是,本文提出的基于逆变器的DCO在3位、5位和7位控制字上的相位噪声分别为- 102.61 dBc/Hz@1MHz、- 99.65 dBc/Hz@1MHz和- 117.54 dBc/Hz@1MHz,相应的优点值(FoM)分别为174.94 dBc/Hz、161.27 dBc/Hz和165.10 dBc/Hz。对于基于3T-NAND门的DCO,相位噪声电平分别为−93.51 dBc/Hz@1MHz、−113.07 dBc/Hz@1MHz和−106.96 dBc/Hz@1MHz,对于3位、5位和7位DCO, FoM值分别为160.23 dBc/Hz、166.70 dBc/Hz和150.30 dBc/Hz。对所提出的dco的综合分析显示了电源变化、相位噪声偏差和频率变化。所报告的dco在输出频率范围、功耗和总体FoM方面表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SN Applied Sciences
SN Applied Sciences MULTIDISCIPLINARY SCIENCES-
自引率
3.80%
发文量
292
审稿时长
22 weeks
期刊最新文献
Modelling cortical network dynamics. Artificial intelligence and sustainability in the fashion industry: a review from 2010 to 2022 Analyze textual data: deep neural network for adversarial inversion attack in wireless networks Molecular interactions in ternary system of K-contin and (2-Aminoacetamido)acetic acid at various temperatures–ultrasonic and viscometric analysis Design and implementation of a wireless communication-based sprinkler irrigation system with seed sowing functionality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1