Influence of cover cropping and conservation tillage on weeds during the critical period for weed control in soybean

IF 1.3 3区 农林科学 Q3 AGRONOMY Weed Technology Pub Date : 2023-11-06 DOI:10.1017/wet.2023.82
Veronica Yurchak, Alan Leslie, Cerruti R.R. Hooks
{"title":"Influence of cover cropping and conservation tillage on weeds during the critical period for weed control in soybean","authors":"Veronica Yurchak, Alan Leslie, Cerruti R.R. Hooks","doi":"10.1017/wet.2023.82","DOIUrl":null,"url":null,"abstract":"Abstract Limited research has been directed at evaluating the ability of single cover crop plantings to suppress weeds in crops beyond the initial field season. Thus, this experiment was conducted to investigate the ability of a second-year self-regenerated annual and second-year perennial cover crop planting to suppress weeds during the critical period for weed control (CPWC) in soybean. Whole plot treatments included: (1) conventional till, (2) no-till with cover crop residue, (3) living mulch + cover crop residue, and (4) living mulch + winter killed residue. Sub-plot treatments involved weed management intensity: a) no weed management (weedy), b) weeds manually removed through the CPWC (third node soybean stage; V3), and c) weeds manually removed until soybean canopy closure (weed-free). Overall, total annual cover crop biomass during the second field season was comparable to biomass obtained from direct seeded stands during the initial field season. All cover crop treatments reduced total weed biomass through the CPWC compared to conventional till. Soybean yield was low across all treatments in this experiment. Still, yield was similar between cover crop and conventional till treatments at one site-year, however, yields were lower in all cover crop treatments at the other site-year.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wet.2023.82","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Limited research has been directed at evaluating the ability of single cover crop plantings to suppress weeds in crops beyond the initial field season. Thus, this experiment was conducted to investigate the ability of a second-year self-regenerated annual and second-year perennial cover crop planting to suppress weeds during the critical period for weed control (CPWC) in soybean. Whole plot treatments included: (1) conventional till, (2) no-till with cover crop residue, (3) living mulch + cover crop residue, and (4) living mulch + winter killed residue. Sub-plot treatments involved weed management intensity: a) no weed management (weedy), b) weeds manually removed through the CPWC (third node soybean stage; V3), and c) weeds manually removed until soybean canopy closure (weed-free). Overall, total annual cover crop biomass during the second field season was comparable to biomass obtained from direct seeded stands during the initial field season. All cover crop treatments reduced total weed biomass through the CPWC compared to conventional till. Soybean yield was low across all treatments in this experiment. Still, yield was similar between cover crop and conventional till treatments at one site-year, however, yields were lower in all cover crop treatments at the other site-year.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大豆杂草防治关键时期覆盖和保护性耕作对杂草的影响
有限的研究直接针对评估单一覆盖作物种植在最初的田间季节之后抑制作物杂草的能力。因此,本试验旨在研究大豆第二年自愈一年生和第二年多年生覆盖作物在杂草防治关键期(CPWC)对杂草的抑制能力。整块处理包括:(1)常规耕作,(2)覆盖作物残茬免耕,(3)活膜+覆盖作物残茬,(4)活膜+冬杀残。分小区处理涉及杂草管理强度:a)无杂草管理(杂草丛生),b)通过CPWC(大豆第三节期)人工清除杂草;V3)和c)人工清除杂草,直到大豆冠层闭合(无杂草)。总体而言,第二个田间季节的年覆盖作物总生物量与第一个田间季节直接播种林分获得的生物量相当。与传统耕作相比,所有覆盖作物处理通过CPWC减少了杂草总生物量。本试验各处理大豆产量均较低。在一个立地年,覆盖作物和常规耕作处理的产量相近,但在另一个立地年,所有覆盖作物处理的产量都较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Weed Technology
Weed Technology 农林科学-农艺学
CiteScore
2.90
自引率
21.40%
发文量
89
审稿时长
12-24 weeks
期刊介绍: Weed Technology publishes original research and scholarship in the form of peer-reviewed articles focused on understanding how weeds are managed. The journal focuses on: - Applied aspects concerning the management of weeds in agricultural systems - Herbicides used to manage undesired vegetation, weed biology and control - Weed/crop management systems - Reports of new weed problems -New technologies for weed management and special articles emphasizing technology transfer to improve weed control -Articles dealing with plant growth regulators and management of undesired plant growth may also be accepted, provided there is clear relevance to weed science technology, e.g., turfgrass or woody plant management along rights-of-way, vegetation management in forest, aquatic, or other non-crop situations. -Surveys, education, and extension topics related to weeds will also be considered
期刊最新文献
Impact of reduced rates of tiafenacil at vegetative growth stages on rice growth and yield Biologically effective dose of diflufenican applied preemergence for the control of multiple herbicide-resistant waterhemp in corn Target site mechanism confers resistance pattern of ACCase-inhibitors in bearded sprangletop (Leptochloa fusca ssp. fascicularis) from California Development and Validation of Avena Integrated Management (AIM): A Bioeconomic Decision Support Tool for Wild Oat Management in Australian Grain Production Systems Grain Sorghum Response to Simulated Fomesafen and Terbacil Carryover from Watermelons in Georgia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1