State of Charge Estimation of Lithium-ion Batteries using Physics-informed Transformer for Limited Data Scenarios

Hyunjin Ahn, Heran Shen, Xingyu Zhou, Yung-Chi Kung, Junmin Wang
{"title":"State of Charge Estimation of Lithium-ion Batteries using Physics-informed Transformer for Limited Data Scenarios","authors":"Hyunjin Ahn, Heran Shen, Xingyu Zhou, Yung-Chi Kung, Junmin Wang","doi":"10.1115/1.4063995","DOIUrl":null,"url":null,"abstract":"Abstract Accurate estimation of the state of charge (SOC) is crucial for ensuring the safe and efficient operation of lithium-ion batteries. Machine learning (ML) models may achieve high SOC estimation accuracy, but typically require large training datasets that may not always be accessible in practical applications. To address this issue, this work proposes a hybrid model consisting of a Transformer neural network and a single particle model with electrolyte dynamics (SPMe) for SOC estimation in limited data scenarios. The Transformer can leverage the internal battery states estimated by the SPMe when necessary and learn to use information from multiple sources (i.e., experimental data and SPMe). Two limited data scenarios, partially available cycles and varying temperatures, are evaluated with experimental battery discharge cycles to identify the conditions under which the proposed model outperforms traditional ML models. Despite being highly dependent on the SPMe's performance, the hybrid model demonstrated improved SOC estimation over the baseline models, with less than 2% error for most scenarios.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Accurate estimation of the state of charge (SOC) is crucial for ensuring the safe and efficient operation of lithium-ion batteries. Machine learning (ML) models may achieve high SOC estimation accuracy, but typically require large training datasets that may not always be accessible in practical applications. To address this issue, this work proposes a hybrid model consisting of a Transformer neural network and a single particle model with electrolyte dynamics (SPMe) for SOC estimation in limited data scenarios. The Transformer can leverage the internal battery states estimated by the SPMe when necessary and learn to use information from multiple sources (i.e., experimental data and SPMe). Two limited data scenarios, partially available cycles and varying temperatures, are evaluated with experimental battery discharge cycles to identify the conditions under which the proposed model outperforms traditional ML models. Despite being highly dependent on the SPMe's performance, the hybrid model demonstrated improved SOC estimation over the baseline models, with less than 2% error for most scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限数据场景下使用物理信息变压器的锂离子电池充电状态估计
准确估算锂离子电池的荷电状态(SOC)是保证锂离子电池安全高效运行的关键。机器学习(ML)模型可以达到很高的SOC估计精度,但通常需要大量的训练数据集,而这些数据集在实际应用中可能并不总是可用的。为了解决这个问题,本研究提出了一个混合模型,该模型由Transformer神经网络和具有电解质动力学(SPMe)的单粒子模型组成,用于有限数据场景下的SOC估计。Transformer可以在必要时利用SPMe估计的内部电池状态,并学习使用来自多个来源的信息(即实验数据和SPMe)。两种有限的数据场景,部分可用循环和变化的温度,通过实验电池放电循环进行评估,以确定所提出的模型优于传统ML模型的条件。尽管混合模型高度依赖于SPMe的性能,但与基线模型相比,混合模型证明了SOC估计的改进,在大多数情况下误差小于2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Some Results on the Properties of Discrete-Time LTI State-Space Systems Using Constrained Convex Optimization in Parameter Estimation of Process Dynamics with Dead Time Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction Adaptive Tracking Control of Robotic Manipulator Subjected to Actuator Saturation and Partial Loss of Effectiveness Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1