Xinsheng Yang Xinsheng Yang, Lianghuang He Xinsheng Yang, Zhaoyue Zhang Lianghuang He, Qiuqing Luo Zhaoyue Zhang
{"title":"A Chaotic Discriminant Algorithm for Arrival Traffic Flow Time Series Based on Improved Alternative Data Method","authors":"Xinsheng Yang Xinsheng Yang, Lianghuang He Xinsheng Yang, Zhaoyue Zhang Lianghuang He, Qiuqing Luo Zhaoyue Zhang","doi":"10.53106/160792642023092405011","DOIUrl":null,"url":null,"abstract":"<p>Chaos discrimination is a prerequisite for the application of chaos theory modeling. Since the average orbital period of an air traffic flow system is long, it is difficult to obtain time series with a small time scale and many data points, so the Small-Data Method is often adopted to quantitatively calculate the chaotic characteristic quantity. However, when using the power spectrum method, it is found that the Small-Data Method is prone to false judgments when the data volume is small. To reduce spurious judgments, we apply a chaos discrimination algorithm based on an Improved Alternative Data Method combined with the Small-Data Method for air traffic flow and analyze it by example. The algorithm was experimentally demonstrated to correct the false judgment results of the Small-Data Method. In particular, when the data volume is only 150, the discrimination accuracy of the improved algorithm is as high as 80%, which is 26% higher than the discrimination accuracy of the Small-Data Method. Moreover, the improved algorithm has better discriminative performance than the Small-Data Method under the same data volume condition, which is suitable for the chaotic discriminative analysis of the arrival traffic flow time series.</p> <p>&nbsp;</p>","PeriodicalId":50172,"journal":{"name":"Journal of Internet Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/160792642023092405011","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Chaos discrimination is a prerequisite for the application of chaos theory modeling. Since the average orbital period of an air traffic flow system is long, it is difficult to obtain time series with a small time scale and many data points, so the Small-Data Method is often adopted to quantitatively calculate the chaotic characteristic quantity. However, when using the power spectrum method, it is found that the Small-Data Method is prone to false judgments when the data volume is small. To reduce spurious judgments, we apply a chaos discrimination algorithm based on an Improved Alternative Data Method combined with the Small-Data Method for air traffic flow and analyze it by example. The algorithm was experimentally demonstrated to correct the false judgment results of the Small-Data Method. In particular, when the data volume is only 150, the discrimination accuracy of the improved algorithm is as high as 80%, which is 26% higher than the discrimination accuracy of the Small-Data Method. Moreover, the improved algorithm has better discriminative performance than the Small-Data Method under the same data volume condition, which is suitable for the chaotic discriminative analysis of the arrival traffic flow time series.
期刊介绍:
The Journal of Internet Technology accepts original technical articles in all disciplines of Internet Technology & Applications. Manuscripts are submitted for review with the understanding that they have not been published elsewhere.
Topics of interest to JIT include but not limited to:
Broadband Networks
Electronic service systems (Internet, Intranet, Extranet, E-Commerce, E-Business)
Network Management
Network Operating System (NOS)
Intelligent systems engineering
Government or Staff Jobs Computerization
National Information Policy
Multimedia systems
Network Behavior Modeling
Wireless/Satellite Communication
Digital Library
Distance Learning
Internet/WWW Applications
Telecommunication Networks
Security in Networks and Systems
Cloud Computing
Internet of Things (IoT)
IPv6 related topics are especially welcome.