Passenger Flow Forecast for Low Carbon Urban Transport Based on Bi-Level Programming Model

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Internet Technology Pub Date : 2023-09-01 DOI:10.53106/160792642023092405005
Yang Tang Yang Tang, Weiwei Liu Yang Tang, Saurabh Singh Weiwei Liu, Osama Alfarraj Saurabh Singh, Amr Tolba Osama Alfarraj
{"title":"Passenger Flow Forecast for Low Carbon Urban Transport Based on Bi-Level Programming Model","authors":"Yang Tang Yang Tang, Weiwei Liu Yang Tang, Saurabh Singh Weiwei Liu, Osama Alfarraj Saurabh Singh, Amr Tolba Osama Alfarraj","doi":"10.53106/160792642023092405005","DOIUrl":null,"url":null,"abstract":"<p>In the context of low-carbon city development, this paper further implements a rail transit passenger flow forecasting method to optimize energy consumption by combining the MMA allocation model with a two-tier planning model for carbon emission control. Through this approach, this paper not only fills the gap of rail transportation planning theories and methods compatible with low-carbon city development, but also emphasizes the importance of energy consumption in transportation planning. Based on a two-tier planning model, this paper considers the Starkberg game between multi-modal and multi-type passenger flow forecasting of rail transit and CO2 emissions of integrated transportation systems. By optimizing the allocation of users in the transportation network from the perspective of both users and planners, while optimizing the CO2 emissions of the integrated transportation system, the dual optimization of energy consumption and environmental benefits is achieved. The method will also be tested in Shanghai, and this paper will comparatively study three different carbon emission control schemes. By assigning passenger flows to the entire transportation system network in Shanghai based on information from the Fourth Integrated Transport Survey, including passenger flows on each road in the road network, passenger flows on each rail line, and characteristic indicators, this paper provides a reliable data base. This study provides a solid foundation for planning the layout of rail transit in a low-carbon mode and makes a positive contribution to sustainable urban development by optimizing energy consumption.</p> <p>&amp;nbsp;</p>","PeriodicalId":50172,"journal":{"name":"Journal of Internet Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/160792642023092405005","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of low-carbon city development, this paper further implements a rail transit passenger flow forecasting method to optimize energy consumption by combining the MMA allocation model with a two-tier planning model for carbon emission control. Through this approach, this paper not only fills the gap of rail transportation planning theories and methods compatible with low-carbon city development, but also emphasizes the importance of energy consumption in transportation planning. Based on a two-tier planning model, this paper considers the Starkberg game between multi-modal and multi-type passenger flow forecasting of rail transit and CO2 emissions of integrated transportation systems. By optimizing the allocation of users in the transportation network from the perspective of both users and planners, while optimizing the CO2 emissions of the integrated transportation system, the dual optimization of energy consumption and environmental benefits is achieved. The method will also be tested in Shanghai, and this paper will comparatively study three different carbon emission control schemes. By assigning passenger flows to the entire transportation system network in Shanghai based on information from the Fourth Integrated Transport Survey, including passenger flows on each road in the road network, passenger flows on each rail line, and characteristic indicators, this paper provides a reliable data base. This study provides a solid foundation for planning the layout of rail transit in a low-carbon mode and makes a positive contribution to sustainable urban development by optimizing energy consumption.

&nbsp;

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双层规划模型的低碳城市交通客流预测
在低碳城市发展背景下,本文将MMA分配模型与碳排放控制的双层规划模型相结合,进一步实现轨道交通客流预测方法以优化能耗。通过这一思路,既填补了与低碳城市发展相适应的轨道交通规划理论和方法的空白,又强调了交通规划中能源消耗的重要性。基于双层规划模型,考虑轨道交通多模式、多类型客流预测与综合交通系统CO2排放之间的Starkberg博弈。从用户和规划者的角度对交通网络中的用户进行优化配置,同时对综合交通系统的CO2排放进行优化,实现能耗和环境效益的双重优化。该方法还将在上海进行测试,并对三种不同的碳排放控制方案进行比较研究。基于第四次交通综合调查的信息,包括路网中各条道路的客流、各条轨道线路的客流以及特征指标,对上海市整个交通系统网络进行客流分配,提供了可靠的数据基础。本研究为低碳轨道交通布局规划提供了坚实的基础,并通过优化能源消耗为城市可持续发展做出了积极贡献。& lt; p>,, & lt; / p>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Internet Technology
Journal of Internet Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
3.20
自引率
18.80%
发文量
112
审稿时长
13.8 months
期刊介绍: The Journal of Internet Technology accepts original technical articles in all disciplines of Internet Technology & Applications. Manuscripts are submitted for review with the understanding that they have not been published elsewhere. Topics of interest to JIT include but not limited to: Broadband Networks Electronic service systems (Internet, Intranet, Extranet, E-Commerce, E-Business) Network Management Network Operating System (NOS) Intelligent systems engineering Government or Staff Jobs Computerization National Information Policy Multimedia systems Network Behavior Modeling Wireless/Satellite Communication Digital Library Distance Learning Internet/WWW Applications Telecommunication Networks Security in Networks and Systems Cloud Computing Internet of Things (IoT) IPv6 related topics are especially welcome.
期刊最新文献
Abnormal Detection Method of Transship Based on Marine Target Spatio-Temporal Data Multidimensional Concept Map Representation of the Learning Objects Ontology Model for Personalized Learning Multiscale Convolutional Attention-based Residual Network Expression Recognition A Dynamic Access Control Scheme with Conditional Anonymity in Socio-Meteorological Observation A Behaviorally Evidence-based Method for Computing Spatial Comparisons of Image Scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1