A Bayesian Nonparametric Latent Space Approach to Modeling Evolving Communities in Dynamic Networks

IF 2.5 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Bayesian Analysis Pub Date : 2023-03-01 DOI:10.1214/21-ba1300
Joshua Daniel Loyal, Yuguo Chen
{"title":"A Bayesian Nonparametric Latent Space Approach to Modeling Evolving Communities in Dynamic Networks","authors":"Joshua Daniel Loyal, Yuguo Chen","doi":"10.1214/21-ba1300","DOIUrl":null,"url":null,"abstract":"The evolution of communities in dynamic (time-varying) network data is a prominent topic of interest. A popular approach to understanding these dynamic networks is to embed the dyadic relations into a latent metric space. While methods for clustering with this approach exist for dynamic networks, they all assume a static community structure. This paper presents a Bayesian nonparametric model for dynamic networks that can model networks with evolving community structures. Our model extends existing latent space approaches by explicitly modeling the additions, deletions, splits, and mergers of groups with a hierarchical Dirichlet process hidden Markov model. Our proposed approach, the hierarchical Dirichlet process latent position cluster model (HDP-LPCM), incorporates transitivity, models both individual and group level aspects of the data, and avoids the computationally expensive selection of the number of groups required by most popular methods. We provide a Markov chain Monte Carlo estimation algorithm and demonstrate its ability to detect evolving community structure in a network of military alliances during the Cold War and a narrative network constructed from the Game of Thrones television series.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":"285 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-ba1300","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

The evolution of communities in dynamic (time-varying) network data is a prominent topic of interest. A popular approach to understanding these dynamic networks is to embed the dyadic relations into a latent metric space. While methods for clustering with this approach exist for dynamic networks, they all assume a static community structure. This paper presents a Bayesian nonparametric model for dynamic networks that can model networks with evolving community structures. Our model extends existing latent space approaches by explicitly modeling the additions, deletions, splits, and mergers of groups with a hierarchical Dirichlet process hidden Markov model. Our proposed approach, the hierarchical Dirichlet process latent position cluster model (HDP-LPCM), incorporates transitivity, models both individual and group level aspects of the data, and avoids the computationally expensive selection of the number of groups required by most popular methods. We provide a Markov chain Monte Carlo estimation algorithm and demonstrate its ability to detect evolving community structure in a network of military alliances during the Cold War and a narrative network constructed from the Game of Thrones television series.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态网络中演化群体建模的贝叶斯非参数隐空间方法
动态(时变)网络数据中社区的演化是一个重要的研究课题。理解这些动态网络的一种流行方法是将并矢关系嵌入到潜在度量空间中。虽然使用这种方法进行集群的方法适用于动态网络,但它们都假定是静态的社区结构。本文提出了一个动态网络的贝叶斯非参数模型,该模型可以对社区结构不断变化的网络进行建模。我们的模型扩展了现有的潜在空间方法,通过层次Dirichlet过程隐马尔可夫模型显式地建模组的添加、删除、分裂和合并。我们提出的分层Dirichlet过程潜在位置聚类模型(HDP-LPCM)结合了传递性,对数据的个体和群体层面进行建模,并避免了大多数流行方法所需的群体数量的计算成本高昂的选择。我们提供了一种马尔可夫链蒙特卡罗估计算法,并展示了它在冷战时期军事联盟网络和《权力的游戏》电视剧构建的叙事网络中检测不断变化的社区结构的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
期刊最新文献
Quantum Speedups for Multiproposal MCMC. Nonparametric Bayes Differential Analysis of Multigroup DNA Methylation Data. Simulation-Based Calibration Checking for Bayesian Computation: The Choice of Test Quantities Shapes Sensitivity. Gridding and Parameter Expansion for Scalable Latent Gaussian Models of Spatial Multivariate Data. Exploiting Multivariate Network Meta-Analysis: A Calibrated Bayesian Composite Likelihood Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1